Module 1: Introduction

Introduction to ONWS

ONWS = Onsite non-potable water systems

Develop local, sustainable water supplies using alternative source waters at building or neighborhood scale

What is Onsite Non-Potable Water?

- Aims to advance use of onsite non-potable water systems by sharing best practices and fostering a supportive policy and regulatory environment
- Water Research Foundation Project 4909 funded by NBRC

National Blue Ribbon Commission for Onsite Non-potable Water Systems

Public Health is the Top Priority

Commission convened Expert Panel to determine pathogen reduction required to make alternative source waters protective of public health

The goal of this Guidance Manual is to provide guidance to ONWS stakeholders who are seeking to implement the risk-based public health framework and promote the safe design, operation, and permitting of ONWS systems.

ONWS Stakeholders

Assumed Stakeholder Experience

Stakeholder	Assumed Minimum Experience
Design engineer	Professional Engineer with previous experience in the design of wastewater, recycled water, or drinking water treatment. Experience may be either at building-scale or municipal-scale. Design engineer should be familiar with the control of pathogenic microorganisms.
Regulator	Previous experience regulating wastewater or drinking water systems (<i>optimal</i>), or other programs with similar public health goals (e.g., food safety, air quality, etc.). Familiarity with the control of pathogenic microorganisms. Experience in the review of permitting documents including engineering reports and operations & maintenance plans.
Operator	Previous experience operating treatment systems in wastewater, recycled water, and/or drinking water. Basic understanding of pathogen control and public health protection. Meet operator certification requirements, as required by the Regulator.
Program Administrator	Understanding of all the basic elements of ONWS (e.g. design, public health, permitting, and operations).
System Owner	Understanding of all the basic elements of ONWS (e.g. design, public health, permitting, and operations).

Training Modules

- 1. Introduction
- 2. Public Health Goals
- 3. Treatment Selection and Crediting Overview
- 4. Treatment Selection and Crediting: Biological Treatment
- 5. Treatment Selection and Crediting: Filtration
- 6. Treatment Selection and Crediting: Disinfection
- 7. Treatment Selection and Crediting: Flow Equalization and Distribution
- 8. Developing Multiple Barrier ONWS Systems
- 9. Operations Plan
- 10. Regulatory and Permitting Plan

Module 2: Public Health Goals

Training Modules

1. Introduction

- 2. Public Health Goals
- 3. Treatment Selection and Crediting Overview
- 4. Treatment Selection and Crediting: Biological Treatment
- 5. Treatment Selection and Crediting: Filtration
- 6. Treatment Selection and Crediting: Disinfection
- 7. Treatment Selection and Crediting: Flow Equalization and Distribution
- 8. Developing Multiple Barrier ONWS Systems
- 9. Operations Plan
- 10. Regulatory and Permitting Plan

Understand requirements for public health protection in ONWS

- Identify the treatment targets for the control of pathogens
- Discuss importance of water quality in the distribution system

Primary Target Audience

Primary Audience:

General Awareness:

What treatment is required for ONWS?

What are the typical contaminants of concern found in alternate water sources?

Chemicals

Pathogens

What treatment is required for ONWS?

How relevant are toxic chemicals in ONWS settings?

Pathogens are the main public health concern

Pathogens are of concern due to three reasons:

- High likelihood of pathogens in ONWS source waters
- Pathogens can cause infection from a single exposure
- Even with low exposure, pathogens may be important source of risk

ONWS Expert Panel recommended log reduction targets (LRTs) to protect public health against pathogens

Which pathogens are relevant for ONWS?

Differences important because it makes them more/less susceptible to various treatment options

Log Reduction Targets for Source Waters and End Uses

Water Use Scenario	Enteric Viruses	Parasitic Protozoa	Enteric Bacteria		
Domestic Wastewater/Blackwater					
Unrestricted irrigation	8.0	7.0	6.0		
Indoor use ¹	8.5	7.0	6.0		
Graywater					
Unrestricted irrigation	5.5	4.5	3.5		
Indoor use	6.0	4.5	3.5		
Stormwater (10% wastewater contribution ²)					
Unrestricted irrigation	5.0	4.5	4.0		
Indoor use	5.5	5.5	5.0		
Stormwater (0.1% wastewater contribution ²)					
Unrestricted irrigation	3.0	2.5	2.0		
Indoor use	3.5	3.5	3.0		
Roof runoff water					
Unrestricted irrigation	N/A	No data	3.5		
Indoor use	N/A	No data	3.5		

Any other concerns?

We just covered control of these pathogens...

What else should we care about?

Regrowth of Bacteria

Bacterial Regrowth

ONWS waters may promote regrowth of bacteria

- Organic matter present in treated waters can:
 - Consume the disinfectants added to minimize growth
 - Serve as an energy source for bacterial growth
- Regrowth impacts both <u>public health</u> and <u>aesthetics</u>
- Public health impacted if promotes growth of opportunistic pathogens
 - Legionella pneumophila
 - Mycobacterium avium
 - Pseudomonas aeruginosa

Control concepts discussed in Module 7

Problem Solving Exercises

Blackwater treatment requires higher LRTs than graywater. Therefore, treated blackwater is of better quality than treated graywater.

- A. True
- ► B. False

- A. virus > protozoa > bacteria
- B. bacteria > protozoa > virus
- C. protozoa > bacteria > virus
- D. virus > bacteria > protozoa
- E. protozoa > virus > bacteria

- A. Legionella
- B. E. coli
- C. Giardia
- D. Cryptosporidium
- E. Entamoeba histolytica

Why is bacterial regrowth a risk for building distribution systems?

- A. Regrowth can cause color and odor issues
- **B.** May promote the growth of *Legionella*
- ► C. May promote the growth of *Cryptosporidium*
- D. A and B are true
- E. All of the above are true

Module 3: Treatment Selection and Crediting

OVERVIEW

Training Modules

- 1. Introduction
- 2. Public Health Goals
- 3. Treatment Selection and Crediting Overview
- 4. Treatment Selection and Crediting: Biological Treatment
- 5. Treatment Selection and Crediting: Filtration
- 6. Treatment Selection and Crediting: Disinfection
- 7. Treatment Selection and Crediting: Flow Equalization and Distribution
- 8. Developing Multiple Barrier ONWS Systems
- 9. Operations Plan
- 10. Regulatory and Permitting Plan

Introduction to Pathogen Crediting

Log Reduction Targets

Introduction to Pathogen Crediting

Targets

Introduction to Pathogen Crediting

Introduction to Pathogen Crediting

How are these specific values assigned? Pathogen Crediting Introduction to pathogen reduction crediting for ONWS

- Overview of existing crediting frameworks and alternative crediting approaches
- Summary of key treatment processes for ONWS

Primary Target Audience

Course Overview

Pathogen Crediting 101

- Overview of Pathogen Crediting Frameworks
- Pathogen Crediting Without Existing Framework
- Bacterial Crediting
- Key Treatment Process Groups

- Overview of Pathogen Crediting Frameworks
- Pathogen Crediting Without Existing Framework
- Bacterial Crediting
- Key Treatment Process Groups

Meeting the LRTs requires putting pathogen crediting into practice

NBRC's Expert Panel defined LRTs for various source waters and end uses

Water Use Scenario	Enteric Viruses	Parasitic Protozoa	Enteric Bacteria					
Domestic Wastewater/Blackwa	ter							
Unrestricted irrigation	8.0	7.0	6.0					
Indoor use ¹	8.5	7.0	6.0					
Graywater								
Unrestricted irrigation	5.5	4.5	3.5					
Indoor use	6.0	4.5	3.5					
Stormwater (10% wastewater contribution ²)								
Unrestricted irrigation	5.0	4.5	4.0					
Indoor use	5.5	5.5	5.0					
Stormwater (0.1% wastewater of	contribution ²)							
Unrestricted irrigation	3.0	2.5	2.0					
Indoor use	3.5	3.5	3.0					
Roof runoff water								
Unrestricted irrigation	N/A	No data	3.5					
Indoor use	N/A	No data	3.5					

Each unit process can achieve a specific Log Reduction Value (LRV)

The treatment train must achieve:

Log Reduction Value (LRV) ≥ Log Reduction Target (LRT)

Each unit process can achieve a specific Log Reduction Value (LRV)

The treatment train must achieve:

Log Reduction Value (LRV) ≥ Log Reduction Target (LRT)

Is meeting LRTs the only treatment goal?

Course Overview

Pathogen Crediting 101

Overview of Pathogen Crediting Frameworks

- Pathogen Crediting Without Existing Framework
- Bacterial Crediting
- Key Treatment Process Groups

- Crediting frameworks exist for multiple drinking water processes
- Using existing frameworks streamlines ONWS implementation

- Step 1: How much removal and/or inactivation does a unit process achieve?
- Step 2: How can you prove that removal and/or inactivation is occurring at all times?

Step 1: Identify applicable framework

Treatment Category	Application	Unit Process	Applicable Pathogens				
		Free Chlorine	V / G				
		Chloramine V / G					
EPA Disinfection	Surface Water	V / G / C					
		V / G / C					
		UV	V / G / C				
		Membrane Filtration	G / C				
EPA Filtration	Surface Water Reverse Osmosis V / G / C						
		Bag and Cartridge Filters	G / C				
NWRI UV Disinfection Potable Water & Recycled Water		UV	V / G / C				
Australian MBR	Recycled Water	MBR	V / G / C / B				
Australia Chlorine	Recycled Water	Free Chlorine	V / B				

Step 1: Identify applicable framework

Treatment Category	Application	Unit Process	Applicable Pathogens				
		Free Chlorine	V / G				
		Chloramine V / G					
EPA Disinfection	Surface Water	Chlorine Dioxide	V / G / C				
		Ozone	V / G / C				
		UV	V / G / C				
		Membrane Filtration	G / C				
EPA Filtration	Surface Water Reverse Osmosis V / G / G						
		Bag and Cartridge Filters					
NWRI UV Disinfection Potable Water & Recycled Water		UV	V / G / C				
Australian MBR	Recycled Water	MBR	V/G/C/B				
Australia Chlorine	Recycled Water	Free Chlorine	V / B				

Step 1: Identify applicable framework and requirements for achieving a specific LRV

Australian WaterVal Free Chlorine CT Table

pН	Log ₁₀ inactivation	≤0.2 NTU							≤2 NTU	J		≤5 NTU				
		5 °C	10 °C	15 °C	20 °C	25 °C	5 °C	10 °C	15 °C	20 °C	25 °C	5 ℃	10 °C	15 °C	20 °C	25 °C
≤7	1	4	3	2	2	1	4	3	2	2	1	4	3	2	2	1
	2	5	4	3	2	2	5	4	3	2	2	6	4	3	2	2
	3	7	5	4	3	2	7	5	4	3	2	7	5	4	3	2
	4	8	6	4	3	2	9	6	4	3	2	9	7	5	3	3
≤7.5	1	7	5	4	3	2	7	5	4	3	2	8	6	4	3	2
	2	10	7	5	4	3	10	7	5	4	3	13	9	6	5	4
	3	13	9	7	5	4	13	9	7	5	4	16	12	9	6	5
	4	16	11	8	6	4	16	11	8	6	4	21	15	11	7	6
≤8	1	9	7	5	3	3	10	7	5	4	3	12	9	6	4	3
	2	14	10	7	5	4	15	10	7	5	4	19	13	9	7	5
	3	18	13	9	7	5	19	13	10	7	5	25	18	13	9	7
	4	23	16	12	8	6	23	16	12	8	6	32	23	16	11	8
≤8.5	1	11	8	6	4	3	12	9	6	5	4	14	10	7	5	4
	2	17	12	9	6	5	19	13	9	7	5	21	15	11	8	6
	3	23	16	12	9	6	25	17	13	9	7	29	21	15	10	8
	4	29	21	15	10	8	31	22	16	11	8	37	26	18	13	9
≤9	1	13	9	6	5	3	14	10	7	5	4	15	10	7	5	4
	2	20	14	10	7	5	22	16	11	8	6	23	16	12	8	6
	3	28	19	14	10	7	30	21	15	11	8	32	23	16	11	8
	4	35	25	17	12	9	38	27	19	13	10	41	29	20	14	10

Step 1: Identify applicable framework and requirements for achieving a specific LRV

Australian WaterVal Free Chlorine CT Table

LRV range from 1 – 4 logs depending on:

- ✤ [Chlorine] * Time
- ✤ Turbidity
- ✤ pH
- ✤ temperature

pН	Logu	SU.2 NTU					≤2 NTU					≤5 NTU				
	inactivation	5 °C	10 °C	15 °C	20 °C	25 °C	5 °C	10 °C	15 °C	20 °C	25 °C	5 ℃	10 °C	15 °C	20 °C	25 °C
≤7	1	4	3	2	2	1	4	3	2	2	1	4	3	2	2	1
	2	5	4	3	2	2	5	4	3	2	2	6	4	3	2	2
	3	7	5	4	3	2	7	5	4	3	2	7	5	4	3	2
1.00	4	8	6	4	3	2	9	6	4	3	2	9	7	5	3 3 5 6 7 4 7	3
≤7.5	1	7	5	4	3	2	7	5	4	3	2	8	6	4	5 20 2 2 2 2 3 2 3 4 3 3 5 3 3 4 3 3 5 3 3 6 5 3 9 6 3 9 7 3 9 7 3 9 7 5 1 8 3 5 10 3 8 13 7 7 5 4 9 6 11	2
	2	10	7	5	4	3	10	7	5	4	3	13	9	6	5	4
	3	13	9	7	5	4	13	9	7	5	4	16	12	9	6	5
	4	16	11	8	6	4	16	11	8	6	4	21	15	11	20 °C 2 3 3 3 5 6 7 4 7 9 11 5 8 10 13 5 8 11 14	6
≤8	1	9	7	5	3	3	10	7	5	4	3	12	9	6	4	3
	2	14	10	7	5	4	15	10	7	5	4	19	13	9	7	5
≤8	3	18	13	9	7	5	19	13	10	7	5	25	18	13	9	7
	4	23	16	12	8	6	23	16	12	8	6	32	23	16	11	8
≤8.5	1	11	8	6	4	3	12	9	6	5	4	14	10	7	5	4
	2	17	12	9	6	5	19	13	9	7	5	21	15	11	8	6
	3	23	16	12	9	6	25	17	13	9	7	29	21	15	10	8
	4	29	21	15	10	8	31	22	16	11	8	37	26	18	13	9
≤9	1	13	9	6	5	3	14	10	7	5	4	15	10	7	5	4
	2	20	14	10	7	5	22	16	11	8	6	23	16	12	8	6
	3	28	19	14	10	7	30	21	15	11	8	32	23	16	11	8
	4	35	25	17	12	9	38	27	19	13	10	41	29	20	14	10

Step 2: How can you prove that removal and/or inactivation is occurring at all times?

Monitoring Performance

Online verification of chlorine residual and flow rate confirms LRV continuously

ONWS Expert Panel recommended continuous monitoring in lieu of end-point monitoring

Offers more temporal control over treatment process performance

LRV confirmed only 1/day

Online verification of chlorine residual and flow rate confirms LRV continuously

- Overview of Pathogen Crediting Frameworks
- Pathogen Crediting Without Existing Framework
- Bacterial Crediting
- Key Treatment Process Groups

Pathogen Crediting Without Existing Framework

Level of effort may be significant

Rigorous testing and evaluation of treatment efficacy required

- Joint decision by Design Engineer and System Owner
- Regulator ultimately decides level of effort needed to develop framework

Pathogen Crediting Without Existing Framework

Considerations for Validation Testing:

- Quantify pathogen reduction through process to assign LRV
- Use actual pathogens or microbial indicators
- Surrogate parameters also measured to link pathogen reduction with surrogate reduction
- Consider impact of changing water quality
- Develop water quality and operating requirements to achieve LRV

Pathogen Crediting Without Existing Framework

Site-specific validation may require significant investment

- Quantify virus using EPA 1615
 - ~\$1,500/sample
- Test range of operating conditions
 - ~20 paired samples
- \$60,000 to validate one treatment process

Treatment Process

Summary of Pathogen Crediting

Pathogen credits assigned via either:

- Existing crediting framework
- Developing and conducting site-specific validation
- Utilizing existing frameworks is the most efficient way to implement systems that comply with pathogen LRTs
- Online monitoring via surrogates allows for continuous verification of pathogen reduction

- Overview of Pathogen Crediting Frameworks
- Pathogen Crediting Without Existing Framework

Bacterial Crediting

Key Treatment Process Groups

No existing crediting frameworks for bacteria

Historical Model

- Routine end-point monitoring
- On-line verification not required
- Limitations:
 - Departs from intention to replace end-point monitoring
 - Provides only a snapshot of performance

LRV confirmed only 1/day

Alternative Approach: Assign Bacterial Credits

Alternative Approach

- Credits based on understanding pathogen removal and/or inactivation
- Leverage existing frameworks considering differences and similarities of bacteria vs. other pathogens

Continuous verification of surrogates confirms LRV continuously

Treatment Effluent

M

Online Analyzer

- Overview of Pathogen Crediting Frameworks
- Pathogen Crediting Without Existing Framework

Bacterial Crediting

Key Treatment Process Groups

Key Treatment Process Groups

The **Treatment Selection and Crediting** modules will cover each of these processes and how they:

- Achieve required LRTs
- Improve water quality and operations

Problem Solving Exercises

What is the main objective of pathogen crediting?

- A. Conservatively quantify the treatment system's ability to meet pathogen log reduction targets
- ► B. Protect public health
- C. Minimize the risk of Legionella
- D. Reduce the level of pathogens in the product water to zero
- E. None of the above

- ► A. Typically does not require costly site-specific validation
- B. Frameworks are built on significant investment to understand the link between process performance and pathogen reduction
- C. Expedites the permitting process
- D. None of the above
- E. A, B, and C are true

- ► A. Bacteria are not an important public health threat
- ▶ B. Bacteria are easy to inactivate
- C. Routine end-point monitoring can be used to show compliance
- ► D. None of the above
- E. A, B, and C are true

- ► A. The treatment train's LRVs must be equal to or greater than the LRT
- B. Drinking water crediting frameworks always apply to ONWS applications
- C. Multiple treatment processes can be used to meet the LRT
- D. Continuous surrogate monitoring can be used to assess unit process performance
- E. Using existing crediting frameworks streamlines ONWS implementation

The goal of site-specific validation is to quantify pathogen reduction through a unit process and link that reduction to a measurable surrogate parameter.

► B. False
Module 4: Treatment Selection and Crediting

BIOLOGICAL TREATMENT

Training Modules

- 1. Introduction
- 2. Public Health Goals
- 3. Treatment Selection and Crediting Overview
- 4. Treatment Selection and Crediting: Biological Treatment
- 5. Treatment Selection and Crediting: Filtration
- 6. Treatment Selection and Crediting: Disinfection
- 7. Treatment Selection and Crediting: Flow Equalization and Distribution
- 8. Developing Multiple Barrier ONWS Systems
- 9. Operations Plan
- 10. Regulatory and Permitting Plan

Why is biological treatment an important treatment process?

How do we know the system is performing as designed?

Does biological treatment reduce pathogens—and if so how do we get credit?

Understand design goals for biological treatment processes

- Learn key design and monitoring concepts
- Introduce pathogen crediting for biological treatment processes

Primary Target Audience

Course Overview

- Biological Treatment 101
- Membrane Bioreactors
- Engineered Treatment Wetlands

Biological Treatment 101

- Membrane Bioreactors
- Engineered Treatment Wetlands

Unwanted Constituents in Blackwater and Graywater:

Particles

- Total suspended solids
- Turbidity

Biodegradable Organics

• Biological oxygen demand (BOD)

Unwanted Constituents in Blackwater and Graywater:

- Virus
- Bacteria
- Protozoa

Biological Treatment

- ✓ Reduce TSS by 85% 95+%
- ✓ Reduce turbidity 85% 95+%
- ✓ Reduce BOD 85% 95%
- ✓ Improves UV Transmittance
- Can be designed to reduce
 ammonia to below detection
- X Pathogen reduction not well understood

Improves subsequent filtration and disinfection

Essential treatment step for blackwater and graywater to prepare water for downstream treatment and distribution

EPA's 2012 Guidelines for Water Reuse suggest:

- BOD \leq 10 mg/L
- Turbidity ≤ 2 NTU
- ► Additional references note TSS \leq 10 mg/L
 - Minimizes microbial regrowth in ONWS distribution systems
- BOD, TSS, UVT, and turbidity can have significant impact on design, cost, and treatment performance of downstream processes

Ammonia Reduction

- Blackwater and graywater may have significant levels of ammonia
- Ammonia impacts ability to do free chlorine disinfection

Nitrification biologically converts ammonia to nitrate

- Requires aerobic conditions and appropriate solids retention time
- Provides greater reduction in BOD and improves UVT

Improved downstream treatment, such as:

 Less solids = more efficient filtration

- No ammonia = more effective disinfection with free chlorine
- X With ammonia = less effective disinfection with chloramine

Biological Treatment 101–Technologies

Two types of biological treatment that can meet treatment goals:

Membrane Bioreactors

Engineered Treatment Wetlands

There are other **suspended growth aerobic processes** (e.g. activated sludge) and **attached growth aerobic processes** (e.g. trickling filters) but they won't be covered in this training module

Biological Treatment 101

Membrane Bioreactors

Engineered Treatment Wetlands

Treatment Objectives

Design Considerations

Membrane Bioreactor – Treatment Objectives

Biological Treatment + Membrane Filter

Biological Treatment:

- ✓ Suspended growth system
- ✓ Reduces BOD
- ✓ Converts ammonia to nitrate
- ✓ Reduces pathogens

Membrane Bioreactor – Treatment Objectives

Membrane Bioreactor – Treatment Objectives

N

Membrane Filter:

- ✓ Satisfies need for filtration
- ✓ Eliminates need for solids settling
- ✓ Reduces footprint
- ✓ Reduces TSS and turbidity
- ✓ Reduces pathogens via size exclusion

Biological Treatment 101

Membrane Bioreactors

Engineered Treatment Wetlands

- Treatment Objectives
- Design Considerations

Biological Reactor
 Membranes
 Permeate Pump and Air Blower
 Permeate and Air Piping

- Crediting framework = Australian WaterVal Validation Protocol
- Specifies conditions to receive credit without requiring site-specific validation
- Tiers define amount of credit and operating envelope
- Ongoing monitoring required to verify operation within envelope

Monitoring requirements for Tier 1 operating envelope:

Parameter	Units	Minimum	Maximum
Bioreactor pH	pH units	6	8
Bioreactor dissolved oxygen	mg/L	1	7
Bioreactor temperature	Celsius	16	30
Solids retention time	days	11	
Hydraulic retention time	hours	6	
MLSS	g/L	3	
Transmembrane pressure	kPa	3	
Membrane flux	L/m²/h		30
Turbidity	NTU		0.2

Additional MBR design considerations...

Pros:

- Relatively small footprint for biological treatment
- Produces high-quality filtered effluent low in BOD, TSS, and turbidity

Cons:

- High energy consumption
- Complex operations

Summary of MBR Design Considerations:

Treatment Process	Pathogen Credit	Pros	Cons
Membrane Bioreactors	1.5 virus 2 protozoa 4 bacteria LRV	 Small footprint High-quality filtered effluent low in BOD, TSS, and turbidity Pathogen crediting framework available 	 Higher energy requirements Complex operations

Course Overview

- Biological Treatment 101
- Membrane Bioreactors

Engineered Treatment Wetlands

- Treatment Objectives
- Design Considerations

Treatment Wetlands – Treatment Objectives

Treatment Mechanisms:

- Water flows through porous media
- Microorganisms and plants populate wetland and improve water quality

Treatment Wetlands – Treatment Objectives

- ✓ Reduces TSS and turbidity
- $\checkmark\,$ Reduces BOD and TOC
- ✓ Reduces ammonia
- X Pathogen reduction not well understood

Course Overview

- Biological Treatment 101
- Membrane Bioreactors

Engineered Treatment Wetlands

- Treatment Objectives
- Design Considerations

No existing frameworks for pathogen reduction crediting

- Pathogen reduction has been evaluated on a case-by-case basis
- Site-specific studies could be done to correlate pathogen reduction to surrogate parameters

Site-specific study for pathogen crediting may present challenges:

 Little precedent due to limited studies of pathogen reduction in biological treatment

- Although pathogen credit may not be sought, wetlands provide important water quality benefits
- Monitoring is still important to ensure performance
- Consider on-line or grab sampling for:
 - BOD
 - Ammonia
 - TSS
 - TOC
 - Turbidity

- Larger footprint compared to MBR
- Minimal energy usage
- Natural aesthetics enhance visual quality of building
- Visual reminder of ONWS system

Treatment Process	Pathogen Credit	Pros	Cons
Engineered Treatment Wetlands	0 LRV	 Lower energy requirements High degree of BOD and TSS reduction Aesthetics 	 Large footprint No existing pathogen crediting framework Lower effluent quality than MBR

Biological Treatment – Summary

Problem Solving Exercises
> A. Reduce dissolved inorganic constituents like sodium and chloride

- **B.** Reduce particulate matter
- ► C. Minimize the risk of Legionella
- D. Reduce biodegradable organics
- E. Both (B) and (D)

Select all that apply:

- A. Membrane bioreactors
- B. Conventional activated sludge
- C. Treatment wetlands
- D. Granular activated carbon
- E. None of the above

A. Organics can foul filters

- ► B. Biological treatment reduces solids loading on subsequent filters
- C. Minimizes microbial regrowth in ONWS distribution systems
- D. None of the above
- ► E. (A), (B), and (C) are correct

- A. MBRs can provide consistent, high quality product water
- ► B. MBRs receive pathogen credit without site-specific validation testing
- C. MBRs remove all pathogens in the water
- ► D. MBRs have a relatively small footprint
- ► E. (A), (B), and (D) are correct

A. YesB. No

Module 5: Treatment Selection and Crediting

FILTRATION

Training Modules

- 1. Introduction
- 2. Public Health Goals
- 3. Treatment Selection and Crediting Overview
- 4. Treatment Selection and Crediting: Biological Treatment
- 5. Treatment Selection and Crediting: Filtration
- 6. Treatment Selection and Crediting: Disinfection
- 7. Treatment Selection and Crediting: Flow Equalization and Distribution
- 8. Developing Multiple Barrier ONWS Systems
- 9. Operations Plan
- 10. Regulatory and Permitting Plan

Why is filtration an important treatment process?

How do we know the system is performing as designed?

Does filtration reduce pathogens—and if so how do we get credit?

Learning Objectives

Design goals for filtration processes

- Key design and monitoring concepts
- Pathogen reduction crediting for filtration processes

Primary Target Audience

Course Overview

- ► Filtration 101
- Cartridge Filtration
- Membrane Filtration
- Reverse Osmosis

Filtration 101

- Cartridge Filtration
- Membrane Filtration
- Reverse Osmosis

Unwanted Constituents in ONWS Source Water:

Particles

- Total suspended solids
- Turbidity

- Particles
- Pathogens
 - Protozoa
 - Virus
 - Bacteria

Particulate reduction quantified via total suspended solids (TSS) and turbidity

Measured as mg/L and NTU

Pathogen reduction quantified via log reduction values (LRVs)

Improves downstream disinfection performance

Particles can shield pathogens from disinfection

Fewer particles = more effective disinfection

Filtration 101 – Filtration Technologies

Three types of filters that can meet treatment goals:

Cartridge Filter

Membrane Filter

Reverse Osmosis

Additional Technologies: granular media filtration, cloth filters, etc. but won't be covered in this training module

Filtration 101 – Filtration Technologies

Course Overview

Filtration 101

- Cartridge Filtration
- Membrane Filtration
- Reverse Osmosis

- Treatment Objectives
- Design Considerations

Cartridge Filtration – Treatment Objectives

- Pressure-driven separation device
- Removes large particles
- Particles collect on filter surface and filter elements are periodically replaced

Cartridge Filtration – Treatment Objectives

Cartridge Filtration – Treatment Objectives

- ✓ Reduce TSS
- ✓ Reduce turbidity
- ✓ Remove some pathogens

Course Overview

Filtration 101

- Cartridge Filtration
- Membrane Filtration
- Reverse Osmosis

- Treatment Objectives
- Design Considerations

- Crediting framework = EPA's Long Term 2 Enhanced Surface Water Treatment Rule (LT2)
- 2.0- to 2.5-log protozoa credit
 - 2.0-log credit for one cartridge filter
 - 2.5-log credit for two filters in series

Validation testing required to verify:

- Particles > 1 µm are removed
- Demonstrate a minimum of 3.0-log removal through challenge testing
- Effluent turbidity requirements should be specified
 - Example: 95% of values < 1 NTU with no values > 5 NTU*

* EPA Surface Water Treatment Rule guidance on cartridge filter performance

Filter selection

- LT2 approved filters provide easiest pathogen crediting
- Larger filter pore sizes can provide removal of particulates, lower operating pressures, less frequent replacement – but more difficult crediting

Monitoring

- Turbidity: online turbidimeters used for continuous monitoring of pathogen removal performance
- Pressure: pressure gauges provide indication of fouling and need for filter replacement

Additional cartridge filter design considerations...

- Pros:
 - Easy operation
 - Lowest energy usage

Cons:

- Particulate removal sufficient but less compared to other options
- Requires more frequent replacement than membrane filters
- Lower pathogen credits

Treatment Process	Pathogen Credit	Pros	Cons
Cartridge Filtration	2- to 2.5-log Protozoa	 Easy operation Lowest energy usage 	 Particulate removal sufficient but less compared to other options Requires more frequent replacement than membrane filters Lower pathogen credits

Course Overview

► Filtration 101

- Cartridge Filtration
- Membrane Filtration
- Reverse Osmosis

- Treatment Objectives
- Design Considerations

Membrane Filtration – Treatment Objectives

Membrane Filtration photo taken at Monterey One Water's Advanced Water Purification Facility

Membrane Filtration – Treatment Objectives

- ✓ Reduce TSS
- ✓ Reduce turbidity
- Effective against some pathogen types

Membrane Filtration – Treatment Objectives

- Reduction of particles > ~0.1 µm or 0.01 µm diameter, depending on type
- ► Reduction of protozoa, which range in size from 3 10 µm

Course Overview

- ► Filtration 101
- Cartridge Filtration
- Membrane Filtration
- Reverse Osmosis

- Treatment Objectives
- Design Considerations

Membrane Filtration – Design Considerations

EPA's Membrane Filtration Guidance Manual provides framework

- Gives protozoa removal credit only
 - Protozoa are the largest of the pathogen groups

Membrane Filtration – Design Considerations

Demonstration of removal is required through:

1. Detecting a breach of 3 µm or larger via membrane integrity test

Demonstration of removal is required through:

- 1. Detecting a breach of 3 µm or larger via membrane integrity test
- 2. Meeting the continuous turbidity requirements

Direct integrity testing: a physical test applied to a membrane unit to identify and isolate integrity breaches

Membranes must be validated to ensure identification of breaches on the order of 3 µm

Higher pressure needed for detecting

Smaller breaches

Pressure required to detect virus-sized integrity breach is beyond what MF/UF membranes can withstand

> Only protozoa log reduction is credited

Indirect integrity testing: continuous monitoring of the filtrate water quality (typically turbidity) to verify removal of particulate matter

> **Continuous monitoring** = measuring at least once every 15 minutes

- Direct and indirect testing required
- 4-log protozoa credit

Additional membrane filter design considerations...

Pros:

- Reliable, high degree of turbidity removal
- Existing pathogen crediting framework
- Cons:
 - Complex operations
 - Higher energy use
 - Membrane replacement is required
 - Special cleaning is occasionally required due to membrane fouling

Treatment Process	Pathogen Credit	Pros	Cons
Membrane Filtration	4-log Protozoa	 Reliable, high degree of turbidity removal Existing pathogen crediting framework 	 Complex operations Higher energy use Membrane replacement is required Special cleaning is occasionally required due to membrane fouling

Course Overview

- Filtration 101
- Cartridge Filtration
- Membrane Filtration
- Reverse Osmosis

- Treatment Objectives
- Design Considerations

Membrane sheets... ...are housed in elements...

....installed on a skid

- ✓ Reduce inorganic and organic compounds
- ✓ Reduce color and odor-causing compounds
- ✓ Remove TSS
- ✓ Remove turbidity
- ✓ Improve UVT
- ✓ Effective against all pathogen types

Pretreatment via membrane filtration is required to operate a reverse osmosis system

- Complete turbidity removal
- Reduction of virus, bacteria, and protozoa
- Reduction of many dissolved compounds

- Complete turbidity removal
- Reduction of virus, bacteria, and protozoa
- Reduction of many dissolved compounds

Goes above and beyond what is required for many ONWS applications

Course Overview

- Filtration 101
- Cartridge Filtration
- Membrane Filtration
- Reverse Osmosis

- Treatment Objectives
- Design Considerations

Crediting frameworks developed by the EPA and state regulators

- LRV equal to removal of a continuously measured conservative surrogate parameter
 - Electrical conductivity
 - Total organic carbon

Credit awarded based on reduction of surrogate parameter

Direct integrity testing not possible for RO membranes

RO systems receive less protozoa credit than MF/UF systems

- but -

RO systems receive credit for *all* pathogen groups—including virus

Pathogen removal credit depends on surrogate selection

Electrical Conductivity

1-log virus

1-log protozoa

Total Organic Carbon

2-log virus

2-log protozoa

Additional RO design considerations...

Pros:

- Complete turbidity removal
- Existing pathogen crediting framework
- Highest water quality (BOD, TOC, UVT, color, etc.)
- Cons:
 - Highest energy use
 - Membrane replacement is required
 - Special cleaning is occasionally required due to membrane fouling
 - A concentrate waste stream is created that requires proper disposal and decreases the amount of water produced

Reverse Osmosis – Summary

Treatment Process	Pathogen Credit	Pros	Cons
Reverse Osmosis	Up to ¹ : 2-log Virus 2-log Protozoa 2-log Bacteria	 Complete turbidity removal Existing pathogen crediting framework Highest water quality (BOD, TOC, UVT, color, etc.) 	 Highest energy use Membrane replacement is required Special cleaning is occasionally required due to membrane fouling A concentrate waste stream is created that requires proper disposal and decreases the amount of water produced

1: Pathogen log removal credit depends on surrogate parameter.

Filtration Summary

	Particulate Reduction	Pathogen Reduction
Cartridge Filter	< 1 NTU	2- to 2.5-log protozoa
Membrane Filter	< 0.2 NTU	4-log protozoa
Reverse Osmosis	All particulates removed	Up to: 2-log protozoa 2-log bacteria 2-log virus

Problem Solving Exercises

Choose the treatment objective(s) that is achieved with filtration:

Select all that apply:

- ► A. Total suspended solids reduction
- **B.** Improves downstream treatment performance
- ► C. Pathogen reduction
- D. Dissolved constituent reduction
- **E.** Turbidity reduction

What types of filters are commonly used for ONWS applications?

Select all that apply:

- ► A. Cartridge filters
- ► B. Granular media filters
- C. Membrane filters
- D. Cloth filters
- ► E. None of the above

- ► A. 0.01 µm
- ▶ B. 0.1 µm
- ▶ C. 1.0 µm
- ▶ D. 10.0 µm
- ► E. None of the above

- ► A. Microfiltration
- ► B. Cartridge filtration
- C. Reverse osmosis
- D. Granular media filtration
- E. None of the above

- ► A. O-log virus, 2- to 2.5-log protozoa, O-log bacteria
- B. O-log virus, 4-log protozoa, 4-log bacteria
- C. 1-log virus, 2- to 2.5-log protozoa, 2-log bacteria
- D. O-log virus, 2- to 2.5-log protozoa, 2-log bacteria
- E. None of the above

How do you demonstrate pathogen reduction with microfiltration?

Select all that apply:

- A. Membrane integrity testing
- **B.** Meeting effluent turbidity requirements via online measurement
- C. Electrical conductivity reduction
- ► D. Total organic carbon reduction
- E. None of the above

What are some of the key design considerations when implementing reverse osmosis?

- A. Energy consumption is highest for reverse osmosis compared to other filtration technologies
- B. Reverse osmosis receives credit for the reduction of all pathogen types
- C. Reverse osmosis creates a waste stream that requires separate disposal
- D. A, B, and C are true
- E. None of the above

Module 6: Treatment Selection and Crediting

DISINFECTION

Training Modules

- 1. Introduction
- 2. Public Health Goals
- 3. Treatment Selection and Crediting Overview
- 4. Treatment Selection and Crediting: Biological Treatment
- 5. Treatment Selection and Crediting: Filtration
- 6. Treatment Selection and Crediting: Disinfection
- 7. Treatment Selection and Crediting: Flow Equalization and Distribution
- 8. Developing Multiple Barrier ONWS Systems
- 9. Operations Plan
- 10. Regulatory and Permitting Plan

Why is disinfection an important treatment process?

How do we know the system is performing as designed?

How do we get credit for the pathogen reduction achieved?

Learning Objectives

- Design goals for disinfection processes
- Key design and monitoring concepts
- Pathogen reduction crediting for disinfection processes

Primary Target Audience

- Disinfection 101
- Chlorine Disinfection
- UV Disinfection
- Ozone Disinfection

Disinfection 101

- Chlorine Disinfection
- UV Disinfection
- Ozone Disinfection

Disinfection 101 – Pathogens of Concern

Not all pathogens are:

- Removed/reduced to the same degree by upstream physical treatment processes
- Equally sensitive/resistant to the same disinfectant

Disinfection 101 – Review of LRTs

Water Use Scenario	Enteric Viruses	Parasitic Protozoa	Enteric Bacteria			
Domestic Wastewater/Blackwater						
Unrestricted irrigation	8.0	7.0	6.0			
Indoor use ¹	8.5	7.0	6.0			
Graywater						
Unrestricted irrigation	5.5	4.5	3.5			
Indoor use	6.0	4.5	3.5			
Stormwater (10% wastewater contribution ²)						
Unrestricted irrigation	5.0	4.5	4.0			
Indoor use	5.5	5.5	5.0			
Stormwater (0.1% wastewater contribution ²)						
Unrestricted irrigation	3.0	2.5	2.0			
Indoor use	3.5	3.5	3.0			
Roof runoff water						
Unrestricted irrigation	N/A	No data	3.5			
Indoor use	N/A	No data	3.5			
Disinfection 101 – Types of Disinfectants

but won't be covered in this training module

Disinfection 101 – Types of Disinfectants

Focus on three most common forms of disinfection: free chlorine, UV, and ozone

Disinfection 101 – UV vs. Chlorine Disinfection

Chlorine sensitivity

- Viruses and bacteria sensitive
- Protozoa highly resistant
- UV sensitivity
 - Protozoa, bacteria, and some viruses highly sensitive
 - Other viruses highly resistant
- Multiple disinfection barriers may be required

Course Overview

Disinfection 101

Chlorine Disinfection

- UV Disinfection
- Ozone Disinfection

- Treatment Objectives
- Design Considerations

Chlorine Disinfection – Treatment Objectives

- Inactivation of pathogens by free chlorine disinfection
- Focus is on <u>free chlorine</u> disinfection for ONWS systems
- Which pathogens should be targeted?

Course Overview

Disinfection 101

Chlorine Disinfection

- UV Disinfection
- Ozone Disinfection

- Treatment Objectives
- Design Considerations

Select framework based on application

Treatment Category	Application	Unit Process	Applicable Pathogens	
		Free Chlorine	V / G	
		Chloramine	V / G	
EPA Disinfection	Surface Water	Chlorine Dioxide	V / G / C	
		Ozone	Applicable Pathogens V/G V/G/C V/G/C V/G/C V/G/C V/G/C/B G/C V/G/C/B V/G/C/B	
		UV	V / G / C	
		Membrane Filtration	G / C	
EPA Filtration	Surface Water	Reverse Osmosis	V / G / C / B	
		Bag and Cartridge Filters	G / C	
NIM/DI LIV/ Disinfaction	Potable Water &	111/		
	Recycled Water	UV	V/G/C	
Australian MBR	Recycled Water	MBR	V / G / C / B	
Australia Chlorine	Recycled Water	Free Chlorine	V / B	

- Blackwater and graywater crediting framework = Australian WaterVal Validation Protocol for Chlorine Disinfection
- ► Up to 4-log virus and bacteria credit
 - Dependent on operating conditions and upstream treatment*

*The CT framework should only be used for bacterial crediting with free chlorine if the disinfection process has been preceded by membrane filtration, MBR, or RO (i.e., filtration processes that produce low-turbidity effluents)

"**C**"

The CT Concept:

CT (mg-min/L) = Chlorine Residual (mg/L) x Contact Time (min)

X

* "Chlorine Residual" is the concentration of chlorine remaining at the <u>end</u> of the Contact Time

"Contact Time" is the amount of time there is contact between the chlorine and the water

Do Not Confuse "CT" and "Contact Time"

WaterVal links pathogen LRV with specific water quality conditions and CT

-	1.00		5	0.2 NT	U				≤2 NTU	J				≤5 NTU	J	
рН	inactivation	5 °C	10 °C	15 °C	20 °C	25 °C	5 °C	10 °C	15 °C	20 °C	25 °C	5 ℃	10 °C	15 °C	20 °C	25 °C
≤7	1	4	3	2	2	1	4	3	2	2	1	4	3	2	2	1
	2	5	4	3	2	2	5	4	3	2	2	6	4	3	2	2
	3	7	5	4	3	2	7	5	4	3	2	7	5	4	3	2
1	4	8	6	4	3	2	9	6	4	3	2	9	7	5	3	3
≤7.5	1	7	5	4	3	2	7	5	4	3	2	8	6	4	3	2
16.61	2	10	7	5	4	3	10	7	5	4	3	13	9	6	5	4
	3	13	9	7	5	4	13	9	7	5	4	16	12	9	6	5
	4	16	11	8	6	4	16	11	8	6	4	21	15	11	7	6
≤8	1	9	7	5	3	3	10	7	5	4	3	12	9	6	4	3
6.4	2	14	10	7	5	4	15	10	7	5	4	19	13	9	7	5
	3	18	13	9	7	5	19	13	10	7	5	25	18	13	9	7
- -	4	23	16	12	8	6	23	16	12	8	6	32	23	16	11	8
≤8.5	1	11	8	6	4	3	12	9	6	5	4	14	10	7	5	4
	2	17	12	9	6	5	19	13	9	7	5	21	15	11	8	6
	3	23	16	12	9	6	25	17	13	9	7	29	21	15	10	8
	4	29	21	15	10	8	31	22	16	11	8	37	26	18	13	9
≤9	1	13	9	6	5	3	14	10	7	5	4	15	10	7	5	4
121	2	20	14	10	7	5	22	16	11	8	6	23	16	12	8	6
	3	28	19	14	10	7	30	21	15	11	8	32	23	16	11	8
	4	35	25	17	12	9	38	27	19	13	10	41	29	20	14	10

Australian WaterVal Free Chlorine CT Table

WaterVal links pathogen LRV with specific water quality conditions and CT

LRV range from 1 – 4 logs depending on:

◆ CT◆ Turbidity◆ pH

✤Temperature

Australian WaterVal Free Chlorine CT Table

	Logia		5	0.2 NT	υ			≤2 NTU						≤5 NTU	J	
pН	inactivation	5 °C	10 °C	15 °C	20 °C	25 °C	5 °C	10 °C	15 °C	20 °C	25 °C	5 ℃	10 °C	15 °C	20 °C	25 °C
≤7	1	4	3	2	2	1	4	3	2	2	1	4	3	2	2	1
	2	5	4	3	2	2	5	4	3	2	2	6	4	3	2	2
	3	7	5	4	3	2	7	5	4	3	2	7	5	4	3	2
	4	8	6	4	3	2	е	6	4	3	2	9	7	5	3	3
≤7.5	1	7	5	4	3	2	7	5	4	3	2	8	6	4	3	2
	2	10	7	5	4	3	10	7	5	4	3	13	9	6	5	4
	3	13	9	7	5	4	13	9	7	5	4	16	12	9	6	5
	4	16	11	8	6	4	16	11	8	6	4	21	15	11	7	6
≤8	1	9	7	5	3	3	10	7	5	4	3	12	9	6	4	3
6.4	2	14	10	7	5	4	15	10	7	5	4	19	13	9	7	5
	3	18	13	9	7	5	19	13	10	7	5	25	18	13	9	7
	4	23	16	12	8	6	23	16	12	8	6	32	23	16	11	8
≤8.5	1	11	8	6	4	3	12	9	6	5	4	14	10	7	5	4
	2	17	12	9	6	5	19	13	9	7	5	21	15	11	8	6
	3	23	16	12	9	6	25	17	13	9	7	29	21	15	10	8
	4	29	21	15	10	8	31	22	16	11	8	37	26	18	13	9
≤9	1	13	9	6	5	3	14	10	7	5	4	15	10	7	5	4
	2	20	14	10	7	5	22	16	11	8	6	23	16	12	8	6
	3	28	19	14	10	7	30	21	15	11	8	32	23	16	11	8
	4	35	25	17	12	9	38	27	19	13	10	41	29	20	14	10

Chlorine Residual versus Dose:

Chlorine Dose

Amount of chlorine added to the water

Chlorine Demand

Chlorine consumed during reaction with organic and inorganic material present

Chlorine Residual

Chlorine remaining after chlorine demand has been satisfied and disinfection has occurred. Chlorine residual is monitored with online meters

Contact Time = Baffling Factor x Average Hydraulic Residence Time (min)

Imply "Baffling Factor" accounts for the hydraulic efficiency of the flow through a system

*** "Average Hydraulic Residence Time"** is flow divided by the volume of the pipeline, contact basin, etc.

How can you prove that inactivation is occurring at all times?

Monitoring Performance

Continuous verification of chlorine residual and flow rate confirms LRV continuously

Importance of Pre-Treatment and Water Quality:

Impact of ammonia

- Ammonia impacts ability to do free chlorine disinfection
- Ammonia < 1 mg/L required for free chlorine disinfection</p>

Impact of turbidity

- May 'shield' microorganisms from the inactivating effects of chlorine
- WaterVal crediting framework requires higher CT with higher turbidity

Additional free chlorine design considerations...

Pros:

- Effective virus control
- Common disinfectant
- Serves as disinfectant for both LRT compliance and distribution system control
- May improve aesthetics through the reduction of color

Cons:

- Limited control of protozoa
- Requires footprint for infrastructure providing contact time
- Safety considerations:
 - Requires considerations for ventilation and exhaust systems
 - Further guidance should be sought in local building and fire codes

Course Overview

Disinfection 101

- Chlorine Disinfection
- UV Disinfection
- Ozone Disinfection

- Treatment Objectives
- Design Considerations

UV Disinfection – Treatment Objectives

- Inactivation of pathogens by UV disinfection
- Which pathogens should be targeted?

UV effective against all pathogen types – though some viruses show high resistance

UV Disinfection – Treatment Objectives

- Inactivation of pathogens by UV disinfection
- Which pathogens should be targeted?

Guidance Manual assumes LRT compliance with recycled water viruses

Course Overview

Disinfection 101

- Chlorine Disinfection
- UV Disinfection
- Ozone Disinfection

- Treatment Objectives
- Design Considerations

The UV Dose Concept: similar to chlorine CT framework

CT (mg-min/L) = Chlorine Residual (mg/L) x Contact Time (min)

UV dose $(mJ/cm^2) = UV$ intensity (mW/cm^2) x Residence Time (s)

 \Rightarrow "UV intensity" (UVI) measurement of the UV output of a lamp or set of lamps in a reactor

"Residence Time" is the amount of time water passes through UV reactor

The UV Dose Concept: similar to chlorine CT framework

CT (mg-min/L) = Chlorine Residual (mg/L) x Contact Time (min)

UV dose $(mJ/cm^2) = UV$ intensity (mW/cm^2) x Residence Time (s)

 \Rightarrow "UV intensity" measurement of the UV output of a lamp or set of lamps in a reactor

> "Residence Time" is the amount of time water passes through UV reactor

Target		Log Inactivation							
Pathogens	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	UV LRVs
Cryptosporidium	1.6	2.5	3.9	5.8	8.5	12	15	22	
Giardia	1.5	2.1	3.0	5.2	7.7	11	15	22	UV dose requirements
Virus	39	58	79	100	121	143	163	186	

The UV Dose Concept: similar to chlorine CT framework

CT (mg-min/L) = Chlorine Residual (mg/L) x Contact Time (min)

UV dose $(mJ/cm^2) = UV$ intensity (mW/cm^2) x Residence Time (s)

Unlike chemical disinfectants, UV does not produce a residual that can be used to calculate CT

 \Rightarrow Water is not uniformly exposed to the UV light, and so a distribution of doses may occur

How do we know how much pathogen inactivation we're getting?

UV Disinfection – Determining UV Dose

How you monitor dose impacts:

- How the reactor is validated
- What parameters are used to confirm dose
- How reactor is operated

Two principal approaches

- UV Intensity Setpoint
- Calculated Dose

Guidance Manual recommends UV Intensity Setpoint approach

- Greater simplicity
- More conservative

Validating with UV Intensity Setpoint Approach

- Test range of flow, UVI, UVT
- Identify conditions that achieve minimum UV dose (e.g., 40 mJ/cm²)
- Define operating envelope

Validation Testing Conditions	UV Intensity (mW/cm ²)	UV Dose (mJ/cm²)	High—	↓ ↓ ↓ ↓ ← 40 mJ/cm² ←	No
Low flow, high UVT	15	80	Flov	Operating 🔶	Credit
High flow, high UVT	12	60		Envelope 🔶	
Low flow, low UVT (75%)	12	60	Low-	+	
High flow, low UVT (75%)	10	40	2011		
High flow, lowest UVT (65%)	8	35		90 80	70 60
			-	UVT (S	%)

Validating with UV Intensity Setpoint Approach

- Test range of flow, UVI, UVT
- Identify conditions that achieve minimum UV dose (e.g., 40 mJ/cm²)
- Define operating envelope

Validation Testing Conditions	UV Intensity (mW/cm ²)	UV Dose (mJ/cm²)	High—	↓ ↓ ↓ ↓ ← 40 mJ/cm² ← N	0
Low flow, high UVT	15	80	Flo	Operating 🗕 Cre	dit
High flow, high UVT	12	60		Envelope 🔶	
Low flow, low UVT (75%)	12	60	Low-	-	
High flow, low UVT (75%)	10	40	2011		
High flow, lowest UVT (65%)	8	35		90 80 70	
				UVT (%)	

Benefits

- Conservative: credits a single UV dose in entire operating envelope
- Simple: only requires UVI and flow rate measurement (not UVT)
- Recommended by US EPA for small water systems

Potential Pitfall

- Many reactors validated for use in potable applications (high UVTs)
- Ensure UVT range suitable for ONWS applications

Validating with UV Intensity Setpoint Approach

- Test range of flow, UVI, UVT
- Identify conditions that achieve minimum UV dose (e.g., 40 mJ/cm²)
- Define operating envelope

Validation Testing Conditions	UV Intensity (mW/cm ²)	UV Dose (mJ/cm²)	High—	↓ ↓ ↓ ↓ ← 40 mJ/cm² ←	No
Low flow, high UVT	15	80	Flov	Operating 🔶	Credit
High flow, high UVT	12	60		Envelope 🔶	
Low flow, low UVT (75%)	12	60	Low-	-	
High flow, low UVT (75%)	10	40	2011		
High flow, lowest UVT (65%)	8	35		90 80 7	т т 70 60
				UVT (%)

Verifying UV Dose

- Measure flow rate and UV intensity
- Confirm reactor meets minimum
 UVI for given flow rate

Validating with UV Intensity Setpoint Approach

- Test range of flow, UVI, UVT
- Identify conditions that achieve minimum UV dose (e.g., 40 mJ/cm²)
- Define operating envelope

Validation Testing Conditions	UV Intensity (mW/cm ²)	UV Dose (mJ/cm ²)	High—	↓ ↓ ↓ ↓ ← 40 mJ/cm² ←		No)
Low flow, high UVT	15	80		Operat	ing 🔶	Cre	dit
High flow, high UVT	12	60		Envelo	pe 🔶		
Low flow, low UVT (75%)	12	60	Low_		-		
High flow, low UVT (75%)	10	40	2011				
High flow, lowest UVT (65%)	8	35		90	1 80	70	
					UVT	(%)	

Verifying UV Dose

- Measure flow rate and UV intensity
- Confirm reactor meets minimum
 UVI for given flow rate

Both UVDGM and NSF 55A validate reactors using the UV Intensity Setpoint Approach

UV Disinfection – Assigning Pathogen Credit

Validation does not require testing with every pathogen of interest

- Typically conducted with a "challenge organism" like bacteriophage MS2
- Credit assigned for different pathogen groups based on results of validation testing, consistent with EPA UVDGM methods

Validated Dose1	Virus Credit	Protozoa Credit	Bacteria Credit
40	2	3	2
80	3.5	6	3.5
100	4.25	6	4.25
150	6	6	6

1. This dose table is intended to apply for validation protocols using MS2.

Up to 6-log virus

Up to 6-log protozoa

Up to 6-log bacteria

Additional UV disinfection design considerations...

Pros:

- Robust protection against all pathogen types
- Highly effective against protozoa
- Small footprint
- Lower chemical costs
- Not impacted by ammonia in feed water

Cons:

- Requires additional chlorine for distribution system control
- Higher energy costs

Course Overview

- Disinfection 101
- Chlorine Disinfection
- UV Disinfection
- Ozone Disinfection

 Treatment Objectives and Design Considerations

Ozone Disinfection

- Ozone disinfection credit based on CT framework
 - Highly effective against virus and Giardia; Cryptosporidium is more resistant
 - EPA CT tables provide credit for all pathogens but bacteria

Safety considerations

- Ozone processes generate heat and potential ozone gas leaks
- Requires stringent considerations for ventilation and exhaust systems
- Further guidance should be sought in local building and fire codes

Additional ozone design considerations...

Pros:

- Effective for disinfection of viruses and protozoa
- Effective control of odor and color

Cons:

- High capital and energy cost
- Requires additional safety measures
- Requires additional chlorine for distribution system control
- No existing crediting framework for bacteria

Disinfection – Summary

Problem Solving Exercises

A. Reduce dissolved inorganic constituents

- ► B. Reduce pathogens
- ► C. Minimize the risk of Legionella
- D. Reduce biodegradable organics
- ► E. Both (B) and (C)
- A. Nitrogen
- ► B. Phosphorous
- C. BOD
- D. Ammonia
- E. None of the above

- A. Virus
- B. Protozoa
- ► C. Bacteria
- ► D. Legionella
- ► E. None of the above

- A. Virus
- B. Protozoa
- ► C. Bacteria
- ► D. Legionella
- ► E. None of the above

- A. Up to: O-log virus, 2-log protozoa, O-log bacteria
- B. Up to: 4-log virus, 0-log protozoa, 4-log bacteria
- C. Up to: 1-log virus, 2-log protozoa, 2-log bacteria
- D. Up to: O-log virus, O-log protozoa, 2-log bacteria
- E. None of the above

- A. Virus
- B. Protozoa
- ► C. Bacteria
- ► D. All the above
- ► E. None of the above

How is system performance verified for UV disinfection via the UV intensity setpoint method?

- ► A. Measuring flow rate
- **B.** Measuring UV intensity
- C. Measuring both flow rate and UV intensity
- **D.** Measuring UV transmittance and UV intensity
- E. None of the above

What are key design considerations when implementing ozone disinfection?

Select all that apply:

- A. Ozone is an effective barrier for virus and protozoa
- B. Ozone can reduce color and odor
- C. Ozone requires additional safety measures
- D. A secondary disinfectant (e.g. chlorine) should be used to maintain a disinfectant residual in the distribution system
- E. Relatively high capital and energy costs

Module 7: Treatment Selection and Crediting

FLOW EQUALIZATION, PRETREATMENT, AND DISTRIBUTION

Training Modules

- 1. Introduction
- 2. Public Health Goals
- 3. Treatment Selection and Crediting Overview
- 4. Treatment Selection and Crediting: Biological Treatment
- 5. Treatment Selection and Crediting: Filtration
- 6. Treatment Selection and Crediting: Disinfection
- 7. Treatment Selection and Crediting: Flow Equalization and Distribution
- 8. Developing Multiple Barrier ONWS Systems
- 9. Operations Plan
- 10. Regulatory and Permitting Plan

Why are flow EQ and distribution system management important?

Why is pretreatment important?

How are these concepts implemented?

Design goals for flow equalization and distribution system management

- Design goals for pretreatment
- Key design concepts

Primary Target Audience

Course Overview

Flow Equalization

Pretreatment

Distribution System Management

Flow Equalization

Pretreatment

Distribution System Management

Important treatment step for all ONWS systems and is beneficial at the beginning, end, or both

Flow Equalization – Overview

Key Considerations:

Source water variability – quality and quantity

Flow Equalization – Overview

Key Considerations:

- Source water variability quality and quantity
- End-use demand variations

Key Considerations:

- Source water variability quality and quantity
- End-use demand variations
- How to design sufficient equalization capacity

Source Water Variability

Flow Equalization – Source Water Variability

Building type and source water type

impact

Quality, quantity, and timing

Quality

BOD, TSS, turbidity, ammonia, and pathogens differ **between** sources and **within** a source

Quantity

- Volume of treatable water is higher for blackwater than graywater
- Volume of rain water available depends on many factors (precipitation, storage, etc.)

Timing

- Black- and graywater have more uniform production than rainwater or stormwater
- Commercial buildings may have fluctuations over days, weeks, and longer periods

Flow Equalization – Source Water Variability

Typical Ranges of Water Quality

Type of Source Water	Total Coliform (CFU/100ml) ¹	BOD (mg/l)	TSS (mg/l)	Turbidity (NTU)	рН	Ammonia (mg/I as N)
Rainwater	10 ² - 10 ³	<15	20 - 50	10 - 30	No Data	N/A
Stormwater	10 ² - 10 ⁵	<40	100 - 500	No Data	No Data	No Data
Graywater	$10^4 - 10^7$	100 - 300	100 - 300	20 - 200	6 - 9	3 - 10
Blackwater	10 ⁸ - 10 ¹⁰	700 - 1,000	300 - 600	No Data	6 - 9	50 - 150

Water quality data are often not available

Flow Equalization – Design Considerations

Beneficial at beginning and end of treatment train

Flow EQ at Start of Train	Flow EQ at End of Train
Buffers out variability in influent flows to provide more consistent flow rate to downstream processes	Provides greater flexibility to meet variations in water demand
Allows for more optimized sizing of downstream processes	Can be designed to hold process water and potable make-up water
Improves operation of downstream processes by providing more consistent quality	Provides treated water supply during short-term system shutdowns

Flow Equalization – Design Considerations

Source water generation over a shorter time period = larger storage volume required

Flow Equalization – Design Considerations

Without flow equalization:

- Unit processes designed to handle peak source water flow
 - Increases cost of treatment
- Unit processes must treat extremes minimum and peak flows
 - Performance may be negatively impacted at extremes
- ONWS system production may not handle peak demands
 - Potable makeup water may be required to meet demands

Course Overview

► Flow Equalization

Pretreatment

Distribution System Management

Important treatment step for all ONWS systems

Pretreatment – Treatment Objectives

Unwanted Constituents in ONWS Source Water:

- Course materials
 - Large solids
- Debris
 - Rags
 - Hair
 - Food scraps
 - Etc.

Pretreatment – Treatment Objectives

Primary Goal:

- Remove coarse materials prior to downstream treatment
- Avoids excessive solids loading on downstream treatment

Pretreatment – Design Considerations

Design Options:

- Coarse Screens
- Fine Screens
- Vortex Filters

Pretreatment – Design Considerations

Coarse Screens

- Remove larger solids and debris
- Finer solids will remain in water

Fine Screens

- Remove smaller solids and debris
- Could clog if larger solids remain in water

Both types can self-clean and discharge to sewer

Pretreatment – Design Considerations

Vortex Filters

- Common for treatment of stormwater and rainwater
- Separates solids via hydraulics
- Collected solids are removed manually
 - Requires regular (but minimal) maintenance

Course Overview

Flow Equalization

Pretreatment

Distribution System Management

Distribution System Management – Overview

Distribution System Management – Treatment Objectives

Poor management can lead to water quality degradation, adversely impacting:

- Aesthetics
 - Color and odor
- Maintenance requirements
 - Microbial regrowth, scaling, corrosion
- Public health
 - Opportunistic pathogens such as *Legionella*

Distribution System Management – Treatment Objectives

Example distribution system water quality goals:

Parameter	Average	Maximum		
Effluent BOD	< 10 mg/L (4-week)	25 mg/L		
Effluent TSS	< 10 mg/L (4-week)	30 mg/L		
Odor	The system shall not emit offensive odo			
Chlorine residual at or near point of use	0.2 mg/L free chlorine residual, <i>or</i> 0.5 mg/L combined chlorine residual			

Distribution System Management – Design Considerations

- Maintain disinfectant residual in distribution system
- Additional treatment for blackwater and graywater:
 - Biological treatment to reduce organics and stabilize the water

Pipe materials and design:

- Select non-reactive materials (e.g. iron can react with chlorine)
- Pipe size and flow velocity (faster is better)
- Avoid stagnation

Maintenance considerations:

- Design system to allow for periodic flushing
- Monitor chlorine residual at different points of use throughout the building
Flow EQ, Pretreatment, Distribution – Summary

Equalizes source water and end-use demand variability

Allows for optimal design and operation of downstream processes

Flow EQ, Pretreatment, Distribution – Summary

- Removes large solids and debris
- Protects downstream treatment processes

Flow EQ, Pretreatment, Distribution – Summary

 Protects aesthetics and safety of the product water
 Minimizes maintenance of distribution system pipes and fixtures

Problem Solving Exercises

Choose the treatment objective(s) that is achieved with flow equalization:

- ► A. Reduce variability of source water quality and quantity
- B. Optimize treatment process capacity
- C. Allow system to meet end-use demand variations
- D. Reduce biodegradable organics
- ► E. (A), (B) and (C)

- ► A. Rainwater
- **B.** Graywater
- C. Blackwater
- D. Stormwater
- E. All the above

- ► A. Remove large solids and debris
- B. Remove dissolved constituents
- C. Decrease solids loading on downstream treatment
- D. Decrease color
- ► E. (A) and (C)

What are the common types of pretreatment used for ONWS applications:

Select all that apply:

- ► A. Coarse screens
- ► B. Fine screens
- C. Vortex filters
- D. Granular media filters
- ► E. (A), (B), and (C)

- A. Cryptosporidium
- B. E. coli
- C. Norovirus
- D. Legionella
- E. Giardia

Choose the treatment objective(s) that is achieved with distribution system management:

Select all that apply:

- A. Maintain treated water quality between the treatment system and point of use
- ► B. Minimize maintenance caused from microbial regrowth
- C. Reduce the total organic carbon in the water
- ▶ D. Minimize the risk of *Legionella*
- E. None of the above

- > A. Maintain disinfectant residual throughout distribution system
- B. Provide additional treatment for blackwater and graywater to reduce organics
- C. Design the distribution system to allow for periodic flushing
- D. Use a primary disinfectant that rapidly reacts with the water and does not leave a residual
- E. Design pipe size and flow velocity to minimize stagnation of water in the distribution system

Module 8: Developing Multiple Barrier ONWS Systems

Training Modules

- 1. Introduction
- 2. Public Health Goals
- 3. Treatment Selection and Crediting Overview
- 4. Treatment Selection and Crediting: Biological Treatment
- 5. Treatment Selection and Crediting: Filtration
- 6. Treatment Selection and Crediting: Disinfection
- 7. Treatment Selection and Crediting: Flow Equalization and Distribution
- 8. Developing Multiple Barrier ONWS Systems
- 9. Operations Plan
- 10. Regulatory and Permitting Plan

Why should multiple barriers be considered when designing ONWS systems?

What are management barriers and why are they useful?

How can an ONWS system be designed with multiple barriers?

- Benefits of multiple barrier treatment trains
- Benefits of non-treatment management barriers
- Designing multiple barrier treatment trains

Primary Target Audience

Primary Audience:

DESIGN ENGINEER REGULATOR

OPERATOR

General Awareness:

PROGRAM ADMINISTRATOR

Course Overview

Benefits of Multiple Barrier Trains

- Benefits of Non-Treatment Management Barriers
- Designing Multiple Barrier Treatment Trains

Course Overview

Benefits of Multiple Barrier Trains

- Benefits of Non-Treatment Management Barriers
- Designing Multiple Barrier Treatment Trains

Ensure reliability of public health protection

Maintain a high degree of availability

Wide diversity of contaminants to remove

Often, one technology doesn't remove everything

h

Filtration

Reduction

0

Pathogen Reduction

Green = effective Yellow = somewhat effective Red = not effective

	Pathogens			Water Quality		
Unit Process	Virus	Protozoa	Bacteria	Particulates	Organics	Removal / Inactivation Mechanisms
Biological Treatment						
Non-membrane options						Biodegradation, adsorption, predation
MBR						Same as above plus size exclusion
Filtration						
Granular media filter						Physical removal (e.g., size
Cartridge filter						
Membrane filter						Physical removal (e.g., size exclusion)
Disinfection						
UV						Physical degradation
Free chlorine						Chomical inactivation and
Chloramine						
Ozone						UNICATION .

Benefits of Multiple Barrier Trains - Robustness

Robustness – treatment <u>diversity</u> improves control of diverse contaminants by employing different mechanisms of removal/inactivation

Cartridge filter effectively reduces turbidity and protozoa

Free chlorine effectively reduces viruses and bacteria

Benefits of Multiple Barrier Trains - Robustness

- ONWS systems will likely require <u>filtration</u> and <u>disinfection</u> to meet pathogen reduction requirements
- Further diversity may be needed within each type of treatment:
 - Free chlorine, combined chlorine, UV light
 - Cartridge filtration, membrane filtration, reverse osmosis
- Biological treatment may be needed for some source waters

Benefits of Multiple Barrier Trains - Robustness

Blackwater and graywater systems will need biological treatment

Biological Treatment

Reduces:

- ✓Nutrients
- ✓ Biodegradable organics
 ✓ Color
 ✓ Odor

Prepares water for - downstream filtration and disinfection

Aesthetics also important to consider

Benefits of Multiple Barrier Trains - Redundancy

- Redundancy the use of treatment beyond minimum requirements to reliably meet treatment goals
- Reduces probability that a treatment excursion leads to failure in public health protection

Benefits of Multiple Barrier Trains - Redundancy

- Redundancy the use of treatment beyond minimum requirements to reliably meet treatment goals
- Reduces probability that a treatment excursion leads to failure in public health protection

Benefits of Multiple Barrier Trains - Redundancy

- Redundancy the use of treatment beyond minimum requirements to reliably meet treatment goals
- Reduces probability that a treatment excursion leads to failure in public health protection

Benefits of Multiple Barrier Trains - Availability

- Redundancy also improves system <u>availability</u> and operability
- Stand-by capacity also improves <u>availability</u>

Benefits of Multiple Barrier Trains - Considerations

- Regarding assumptions for:
 - Performance
 - Cost
 - Operability

Balance cost/footprint constraints with operability and uptime

Multiple Barrier Treatment Trains – Add'l Considerations

Course Overview

Benefits of Multiple Barrier Trains

Benefits of Non-Treatment Management Barriers

Designing Multiple Barrier Treatment Trains

Benefits of Non-Treatment Management Barriers

Management Barriers

- Source Control
- Alternative Disposal and Supply Options
- Flow Equalization
- Monitoring
- Operational Optimization

Promote goals of public health protection and system availability

Management Barriers – Source Control

Prevent passage of pathogens, chemicals, or other quality concerns

- Separate challenging feed water
- Public outreach throughout the building to alert users that water is recycled

Management Barriers – Source Control

- First flush diverters for rainwater and stormwater systems
- Minimizes contaminant load to treatment system

Initial captured rain diverted to sewer

Management Barriers – Alternative Disposal and Supply

Alternate options for wastewater disposal and treated water supply

Reduce need to design systems for rigorous, continuous reliability

Management Barriers – Flow Equalization

Dampens out peaks of contaminants

- Provides response time and more consistent water quality and flow to downstream treatment processes
- See Module 7 for additional information

Management Barriers - Monitoring

- Monitoring is an essential element of ONWS systems
- Continuous monitoring via on-line analyzers provides on-going assurance of treatment efficacy
- Shortens duration of off-spec operation

Management Barriers – Operations Optimization

Trained, onsite operators can improve system reliability through:

- Proper operation
- Maintenance
- Optimization of system barriers
- Capability for remote operation also beneficial

Balancing Treatment and Management Elements

Systems designed to utilize best configuration to fit site constraints

- Less standby capacity
- Seek alternate disposal and supply options
- Use redundant online monitoring
- Design system with redundant treatment
- Design redundant and robust system
- Include standby capacity

Course Overview

Benefits of Multiple Barrier Trains

Benefits of Non-Treatment Management Barriers

Designing Multiple Barrier Treatment Trains

Designing Multiple Barrier Treatment Trains

What is the quality of my source water?

What is the intended non-potable use?

Design system to achieve pathogen reduction for use in ONWS

- Provide assurance that LRTs are being met
- Decrease organics to create a biologically stable water
- Create aesthetically acceptable water (particulates, odor, color)

Multiple Barrier Treatment Trains - Blackwater

Unit Process Pathogen Credits			5	Total Log	LRTs for
	MBR	UV	Free Chlorine	Removal	Blackwater
Virus	1.5	3.5	5.0	10.0	8.5
Protozoa	2.0	6.0	0.0	8.0	7.0
Bacteria	4.0	3.5	5.0	12.5	6.0

Multiple Barrier Treatment Trains - Blackwater

Design system to achieve pathogen reduction for use in ONWS

- Provide assurance that LRTs are being met
- Decrease organics to create a biologically stable water
- Create aesthetically acceptable water (particulates, odor, color)

Multiple Barrier Treatment Trains - Graywater

	Unit Process Pathogen Credits		Total Log	LRT for	
	MBR	UV	Removal	Graywater	
Virus	1.5	6.0	7.5	6.0	
Protozoa	2.0	6.0	8.0	4.5	
Bacteria	4.0	6.0	10.0	3.5	

Multiple Barrier Treatment Trains - Stormwater

	Unit Process Pathogen Credits		Total Log	LRT for	
	MF	UV	Removal	Stormwater	
Virus	0.0	3.5	3.5	3.5	
Protozoa	0.0	6.0	6.0	3.5	
Bacteria	0.0	3.5	3.5	3.0	

Multiple Barrier Treatment Trains – Roof Runoff

	Unit Process Pathogen Credits UV	Total Log Removal	LRT for Roof Runoff
Virus	N/A	N/A	N/A
Protozoa	N/A	N/A	N/A
Bacteria	3.5	3.5	3.5

Multiple Barrier Treatment Trains - Monitoring

Highest priority for monitoring barriers achieving LRT credit

- Recommend on-line, high frequency monitoring
 - Better than end-point monitoring for understanding performance
 - Allows for higher degrees of automated control and remote operation

Still beneficial to monitor barriers not receiving LRT credit

Is ammonia being removed? BOD and odor reduced?

Multiple Barrier Trains – Additional Considerations

- Selection of meters and sensors
- ► Hydraulic profile
- Serviceability
- Sample tap location

Multiple Barrier Treatment Trains – Summary

- Pathogen control
- Particulate removal
- Biological stabilization
- Color and odor control
- Distribution system protection

Because no single process can meet all of the goals... ...multiple barriers are frequently required

Problem Solving Exercises

► A. It can enhance reliability

- **B.** It can reduce a wide diversity of contaminants
- C. It can guarantee the system will perform 100% of the time
- D. It can help to maintain a high degree of system uptime
- E. It can reduce the risk of treatment excursions that lead to failure in public health protection

- A. The use of treatment beyond the minimum requirements to reliably meet treatment goals
- B. Using a diversity of treatment processes to improve control of diverse pathogens and chemical contaminants
- C. The prevention of passage of pathogens, chemicals, or other quality concerns
- ► D. All the above
- E. None of the above

What is a key benefit of treatment redundancy in an ONWS setting:

- A. It reduces the probability that a treatment excursion leads to failure in public health protection
- **B.** It makes it impossible to have a treatment failure
- C. It minimizes maintenance requirements for the ONWS
- D. All the above
- E. None of the above

What are examples of non-treatment management barriers:

Select all that apply:

- A. Treatment performance monitoring
- ► B. Source control
- C. Treatment redundancy
- D. Flow equalization
- **E.** Operational optimization

What are some of the benefits to having alternative disposal and supply options:

- A. Reduces the need to design systems for rigorous, continuous reliability
- B. Allows for more streamlined commissioning testing
- C. Provides for rapid failure response while continuing to meet building demand
- D. (A) and (C) are true
- E. None of the above

Link the Design Consideration with Potential Solutions

- A. Remote Operation Required?
- Less standby capacity a. •
 - Seek alternate disposal and supply options

B. Space Limited?

- b.
 - Use redundant online monitoring Design system with redundant treatment

- C. No Alternate Supply Available?
- C. Design redundant and robust systemInclude standby capacity

Complete the following treatment trains to meet the required LRTs

Blackwater

Fill in the missing LRVs for each pathogen group for the treatment train provided. Does this train meet the LRTs for blackwater being reused for toilet flushing?

	Unit Process Pathogen Credits			Total Log	LRTs for
	Tier 1 MBR	UV	Free Chlorine with WaterVal	Removal	Blackwater
Virus		3.5	4.0		
Protozoa					
Bacteria					

Select two treatment processes that provide the required LRTs:

	Unit Process Pathogen	Credits Total Log	LRT for
		Removal	Graywater
Virus			6.0
Protozoa			4.5
Bacteria			3.5

Stormwater

Fill in the missing LRVs for each pathogen group for the treatment train provided. Does this train meet the LRTs for stormwater being reused for toilet flushing?

	Unit Process Pathogen Credits		Total Log	LRT for	
	MF	UV	Removal	Stormwater	
Virus		3.5			
Protozoa					
Bacteria					

Roof Runoff

Develop a treatment train that provides the required LRTs:

	Unit Process Pathogen Credits	Total Log Removal	LRT for Roof Runoff
Virus			N/A
Protozoa			N/A
Bacteria			3.5

Module 9: Operations Plan

Training Modules

- 1. Introduction
- 2. Public Health Goals
- 3. Treatment Selection and Crediting Overview
- 4. Treatment Selection and Crediting: Biological Treatment
- 5. Treatment Selection and Crediting: Filtration
- 6. Treatment Selection and Crediting: Disinfection
- 7. Treatment Selection and Crediting: Flow Equalization and Distribution
- 8. Developing Multiple Barrier ONWS Systems
- 9. Operations Plan
- 10. Regulatory and Permitting Plan

Primary Goals of ONWS System Design and Operation

Meet or exceed all compliance objectives – protect public health

Maintain reliability and uptime of the equipment

Ensure the safety of all operating personnel

Primary Goals of ONWS System Design and Operation

- An Operations Plan is a critical part of a successful ONWS system
- Documents key components of operating and maintaining system

Engineer should describe key elements of the Operations Plan to the Operator

Importance of interface between design, permitting, and operations

- Critical documentation for operating and commissioning ONWS systems
- Roles for Design Engineers, Regulators, and Operators related to startup, commissioning, and ongoing operations of ONWS systems

Primary Target Audience

Primary Audience:

General Awareness:

Course Overview

Introduction to the essential elements of an Operations Plan:

- Process Design and Control Theory
- Standard Operating Procedures
- Maintenance Plan
- Compliance Reporting
- Environment, Health and Safety Plan
- Emergency Response Plan
- 0&M Staffing Plan
- Commissioning and Acceptance Test Plan
- Process Optimization

Course Overview

Introduction to the elements of an Operations Plan:

- Process Design and Control Theory
- Standard Operating Procedures
- Maintenance Plan
- Compliance Reporting
- Environment, Health and Safety Plan
- Emergency Response Plan
- O&M Staffing Plan
- Commissioning and Acceptance Test Plan
- Process Optimization
Process Control

Defines how the system should be operating

Performance Monitoring

Confirms the system is operating as designed

Alarms and Notifications

Alerts the operator when a parameter is out of the typical range

Process Control

- Developed by Design Engineer
- Control Narrative
 - Operating modes
 - Event sequences
 - Instrumentation
 - Setpoints, alarms, feedback controls

Performance Monitoring

- Identify monitors used for:
 - Assessing LRT compliance
 - Assessing water quality compliance
 - Maintaining stable operations
- Identify operating ranges

• Flow rate \leq 10 gpm \rightarrow contact time \geq 15 min

Alarms and Notifications

Key monitoring parameters have setpoints = target value or range controlled through operational changes

Alarms and Notifications

- Alarm triggered when processes operate outside setpoint to:
 - Initiate operator response
 - Initiate automatic response
- Critical alarm categories:
 - LRT compliance
 - Water Quality
 - Operational
- Routine testing of alarms and shutdown features is recommended

LRT Compliance Alarm

Indicates a problem with a unit process's ability to achieve the credited LRT

Water Quality Alarm

Indicates a problem with unit process or overall treatment train's ability to achieve a water quality target

Operational Alarm

Indicates a problem with a unit process or the overall treatment train's ability to function as designed and continue to produce water

Alarms and Notifications

Example Alarms and Responses

Location	Alarm Name	Alarm Type	Alarm Level	Response
Cartridge Filter	High effluent turbidity (NTU)	Water Quality	Alert: 0.2	Alert: Operator visually inspect for signs of integrity breach
			Critical: 0.5	Critical: Automated diversion to sewer
UV	Low influent UVI (mW/cm²)	LRT Compliance	Alert: 12	Alert: Operator inspect upstream process data for indications of performance deteriorating
			Critical: 10	Critical: Automated diversion to sewer
Treated water tank	Low chlorine residual (mg/L)	Water Quality	Alert: 0.7	Alert: Operator verify residual reading and check chlorine dosing pump
			Critical: 0.5	Critical: Automated diversion to sewer

- Process Design and Control Theory
- Standard Operating Procedures
- Maintenance Plan
- Compliance Reporting
- Environment, Health and Safety Plan
- Emergency Response Plan
- O&M Staffing Plan
- Commissioning and Acceptance Test Plan
- Process Optimization

SOP = set of step-by-step instructions developed to help operators carry out complex or routine operations

 \checkmark Achieves efficient and consistent performance

✓ Reduces miscommunication and compliance failures

✓ Knowledge transfer among operators

Developed by:

With input from:

OPERATOR

DESIGN ENGINEER

Standard Operating Procedures

SOPs Should Be:

- Written down
- Up-to-date
- Consistent with industry best practices
- Aligned with regulatory requirements
- Effective (test that it works)
- Reviewed and revised periodically with revision date posted

Sample SOPs:

- Safely filling a chemical storage tank
- Shutting down the ONWS system
- Replacing the lamps in a UV reactor
- Replacing the chemical reagent for a chlorine analyzer
- Collecting and analyzing water quality samples
- Equipment calibration

Standard Operating Procedures

Example SOP for chlorine analyzer (FC#2) maintenance:

- Place PLC in "Continuous Dose Mode"
 - Allows operator to disable automatic dose control based on FC#2 residual
- Remove chlorine sensor from flowcell
- Disconnect sensor from digital display

▶ etc...

- Process Design and Control Theory
- Standard Operating Procedures
- Maintenance Plan
- Compliance Reporting
- Environment, Health and Safety Plan
- Emergency Response Plan
- O&M Staffing Plan
- Commissioning and Acceptance Test Plan
- Process Optimization

Maintenance activities can be grouped by level:

- Level 1: Routine
- Level 2: Preventative
- Level 3: Equipment repair
- Level 4: Equipment replacement

Level 1: Routine Maintenance

- Monitoring and responding to alarms
- Reviewing operational logs
- Performing housekeeping
- Conducting walk-throughs of ONWS system
- Replacing consumables in analyzers

Level 1: Routine Maintenance - example

Routine Operations and Maintenance Activities

<u>Daily</u>

- Check for leaks and odors
- Check and respond to any alarms or warnings
- Record key operating parameters
- Perform any required grab sampling (e.g. turbidity and chlorine residual)
- Check and record chemical levels

<u>Monthly</u>

- Perform service and calibration on critical instruments
- Check mixer and aeration distribution is normal
- Check UV sleeve and lamps

Weekly

- Check chemical levels and fill as needed
- Drain condensate from air receivers
- Perform any required grab sampling (e.g., total coliform)
- Check biomass color and MLSS, and any signs of foaming
- Inspect screens for any buildup of debris

Periodic

- Perform chemical cleans on membranes
- Replace UV lamps as needed (typically 12-18 months)
- Replace or refurbish analytical probes as required

Level 2: Preventive Maintenance

- Tasks performed according to manufacturer requirements and recommendations
- Work is scheduled and tracked with results recorded
- Tasks categorized as daily, weekly, monthly, or periodic
- Results are evaluated and adjustments made to enhance reliability and reduce risk of failure

Preventive > Reactive

 ✓ Reduces overall maintenance costs
✓ Decreases frequency, cost, and downtime of repairs

Level 3: Equipment Repair

- Repair activities may be indicated by inspections, readings, or manufacturer recommendations
- Should be carried out in a timely fashion and scheduled

Level 4: Equipment Replacement

- Replacement activities determined by operational and maintenance data collected over time
 - Based on design criteria, operational data, inspections, and condition assessments
- May be planned, scheduled, and budgeted for via capital expenditures

- Process Design and Control Theory
- Standard Operating Procedures
- Maintenance Plan
- Compliance Reporting
- Environment, Health and Safety Plan
- Emergency Response Plan
- O&M Staffing Plan
- Commissioning and Acceptance Test Plan
- Process Optimization

Compliance Reporting

- Compliance reporting is a regulatory requirement!
- Ensures ONWS system is meeting conditions of the operating permit
 - Reporting requirements detailed in permit

Was the CT requirement continuously met?

Compliance Reporting

Data required for compliance reporting may include:

- On-line process data
- Grab sample analytical results
- Maintenance records
- Meter calibration records
- System event logs

Compliance Reporting

Work together to develop the daily and monthly treatment plant report form. Ideally, compliance and operational reporting needs can be combined in a single report format

- Process Design and Control Theory
- Standard Operating Procedures
- Maintenance Plan
- Compliance Reporting
- Environment, Health and Safety Plan
- Emergency Response Plan
- O&M Staffing Plan
- Commissioning and Acceptance Test Plan
- Process Optimization

Environment, Health and Safety Plan

Communicate and implement practices of environmental protection and workplace safety

- ✓ Complies with OSHA regulations
- ✓ Develops procedures for identifying workplace hazards
- ✓ Reduces accidents and exposure to harmful situations

- Creates system approach to comply with environmental regulations
- Considers air quality, hazardous material containment, etc.

Environment, Health and Safety Plan

A chemical safety plan is an essential element of an Environment, Health and Safety Plan

Safety data sheets (SDS) and a site map should accompany the plan

Personal Protective Equipment

Hazardous Material Storage and Management

Identify appropriate PPE for each chemical onsite and each activity involving hazardous substances

compatible storage materials where needed

Store necessary PPE onsite for handling of hazardous materials

Provide inventory of hazardous substances and their locations

Provide proper labeling, secondary containment, and

Follow applicable rules for inspection procedures and

Eyewash and Shower Stations

- Identify appropriate use procedures, station locations, frequency of inspections, and inspection protocols
- Provide description of maintenance procedures and frequency

Chemical Spill Kits

- Store near chemical storage sites
- Provide list of spill kit contents for each chemical stored onsite
- Inspect kits regularly and document inspection results

Chemical Deliveries

- Use licensed carrier to transport hazardous materials
- Provide list of chemical suppliers and contact information
- Describe procedures for receiving chemical deliveries, including receiving location, minimum training requirements, precautions needed, etc.

- Process Design and Control Theory
- Standard Operating Procedures
- Maintenance Plan
- Compliance Reporting
- Environment, Health and Safety Plan
- Emergency Response Plan
- O&M Staffing Plan
- Commissioning and Acceptance Test Plan
- Process Optimization

Emergency Response Plan

a description of procedures that will be implemented in the event of an emergency

Emergency Response Plan

Procedures designed to protect the public and emergency personnel

- Key elements include:
 - ONWS system operator/owner contact information
 - Evacuation plan
 - Emergency contacts (fire, police, poison control center, etc.)
 - Natural disaster response procedures
 - Power outage response procedures
 - Etc.

- Process Design and Control Theory
- Standard Operating Procedures
- Maintenance Plan
- Compliance Reporting
- Environment, Health and Safety Plan
- Emergency Response Plan
- O&M Staffing Plan
- Commissioning and Acceptance Test Plan
- Process Optimization

- An O&M Staffing Plan should be developed well before commencement of start-up
- Key questions:
 - How many hours per day or week are on-site staff needed to support the ONWS system?
 - What type of staff are needed to both operate and maintain the ONWS system?
 - What type of training do staff need to successfully operate the ONWS system?

O&M Staffing Plan

How many hours per day or week are on-site staff needed to support the ONWS system?

O&M Staffing Plan

What type of staff are needed to both operate and maintain the ONWS system?

- Requirements may vary by jurisdiction
- Full-time, part-time, on-call, or service contractors may be used
- Special considerations:
 - Highly automated systems tend to be more complex when maintenance is required
 - Biological treatment may require staff with specific training

O&M Staffing Plan

What type of training do staff need to successfully operate the ONWS system?

- Some level of training should be provided to all staff engaged in ONWS system
- Often provided by:

 Should include training materials to augment the O&M Manual, SOPs, Environment, Health and Safety Plan, etc.

- Process Design and Control Theory
- Standard Operating Procedures
- Maintenance Plan
- Compliance Reporting
- Environment, Health and Safety Plan
- Emergency Response Plan
- O&M Staffing Plan
- Commissioning and Acceptance Test Plan
- Process Optimization

Commissioning and Acceptance Test Plan

- Describes specific procedures to ensure both design and performance specifications are met
- Confirms compliance with regulations
- Defines schedule and duration of commissioning
- Provides documentation of system performance expectations

Commissioning Test Plan Checklist

Set up system to ensure all treatment processes receiving pathogen credit can be sampled

Ensure treated water can be discharged safely, e.g. to sewer

Ensure adequate chemicals and consumables are available

Notify relevant agencies about test plan and schedule

Verify system controls are effective for ensuring LRT compliance, for example:

Low UVI alarm

Low chlorine residual alarm

Other critical LRT compliance alarms

Provide results to relevant agencies
Course Overview

Introduction to the elements of an Operations Plan:

- Process Design and Control Theory
- Standard Operating Procedures
- Maintenance Plan
- Compliance Reporting
- Environment, Health and Safety Plan
- Emergency Response Plan
- O&M Staffing Plan
- Commissioning and Acceptance Test Plan
- Process Optimization

Process Optimization

Optimization has many benefits:

✓Operator ownership in performance of system

- ✓ Reduced energy and chemical usage
- ✓ Reduced operating costs
- ✓ Improved reliability
- ✓Consistent regulatory compliance to protect public health

Process Optimization

The path to optimization may include:

- Testing beyond routine requirements
- Regular review and trending of operational data to identify trends, spot unexpected changes, and determine causation between certain system factors

Optimization examples:

- Tuning a control loop to prevent overdosing of chlorine
- Determining the optimal frequency to change cartridge filter
- Adjusting operation of biological treatment to reduce organic loading downstream

Problem Solving Exercises

- ► A. Meet or exceed all compliance objectives to protect public health
- ► B. Minimize costs of ONWS treatment processes and O&M
- C. Maintain reliability and uptime of equipment
- D. Ensure the safety of all operating personnel
- E. All the above

A. Process Design and Control Theory Descriptions

- ► B. Engineering Plan
- ► C. Maintenance Plan
- D. Emergency Response Plan
- **E.** Commissioning and Acceptance Test Plan

- A. LRT compliance alarm
- ► B. Water quality alarm
- C. Operator safety alarm
- ► D. Operational alarm
- E. All the above

► A. Routine

► B. Preventative

C. Equipment repair

D. Troubleshoot

► E. Equipment replace

- A. On-line process data
- ► B. Maintenance records
- C. System event logs
- ► D. All the above
- ► E. None of the above

Select impact on staffing needs

Select whether the situation on the left increases or decreases staffing needs:

► A. Confirms compliance with regulations

- ► B. Provides documentation of system performance expectations
- C. Describes specific procedures to ensure both design and performance specifications are met
- D. All the above
- E. None of the above

Module 10: Regulatory and Permitting Plan

Training Modules

- 1. Introduction
- 2. Public Health Goals
- 3. Treatment Selection and Crediting Overview
- 4. Treatment Selection and Crediting: Biological Treatment
- 5. Treatment Selection and Crediting: Filtration
- 6. Treatment Selection and Crediting: Disinfection
- 7. Treatment Selection and Crediting: Flow Equalization and Distribution
- 8. Developing Multiple Barrier ONWS Systems
- 9. Operations Plan

10. Regulatory and Permitting Plan

- Importance of communication between the project team and regulators
- Steps of the regulatory process and how to navigate them
- Key documentation required for regulatory compliance

Primary Target Audience

Primary Audience:

General Awareness:

Communication is Key...

Communication is Key...

... to efficient and successful ONWS implementation

Early and frequent communication minimizes:

- Costly last-minute revisions to ONWS design
- Start-up delays due to permitting issues
- Risk of non-compliance from insufficient monitoring capabilities

Communication is Key Throughout Implementation

Multiple opportunities to evaluate projects and ensure compliance

- Initial Project Development and Preliminary Design
- Final Design, Construction, and Initial Inspections
- Project Startup and Commissioning
- On-Going Monitoring, Reporting, Inspection and Enforcement

- Final Design, Construction, and Initial Inspections
- Project Startup and Commissioning
- On-Going Monitoring, Reporting, Inspection and Enforcement

Project Application includes basic information about the ONWS system:

Project team?

Preliminary Design at 10% - 30% includes:

- Selected treatment processes and basic process control description
- Monitoring capabilities
- Engineering Report
 - Describes how design complies with requirements for ONWS including LRTs

 \checkmark LRV \ge LRT for virus, protozoa, and bacteria

- Engineering Report describes how the project meets applicable regulatory requirements
- Report must be stamped by a PE registered in the relevant state with experience in water and/or wastewater
- Submitted at least twice throughout development process:
 - 10 30% design
 - 60 100% design

Preliminary Engineering Report for blackwater ONWS system for indoor end uses:

	Unit Process Pathogen Credits		Total Log	LRT for
	MBR	UV	Removal	Blackwater
Virus	1.5	6.0	7.5	8.5 🗙
Protozoa	2.0	6.0	8.0	7.0 🗙
Bacteria	4.0	6.0	10.0	6.0 🗸

Preliminary Engineering Report for blackwater ONWS system for indoor end uses:

Report template can streamline regulatory review

- Project Startup and Commissioning
- On-Going Monitoring, Reporting, Inspection and Enforcement

- Final Design and Engineering Report
- Operations Plan
- Cross-Connection Inspection
- Permit to Operate

Final Design and Engineering Report

10% - 30% Design 60% - 100% Design Preliminary Final Final Preliminary **Engineering Report Engineering Report** Engineering Report Engineering Report **ONWS System ONWS System ONWS System ONWS System** Reviewed Approved REGULATOR REGULATOR SYSTEM **OPERATOR** SYSTEM **OPERATOR** DESIGN DESIGN OWNER OWNER ENGINEER ENGINEER

- Operations Plan Training Module 9
- Focused on:
 - Operation
 - Monitoring
 - Reporting
- Requirements may vary depending on project jurisdiction

- Cross-Connection Inspection is required to ensure proper separation of ONWS product water and potable water
- May occur during and/or after construction is complete
- Numerous other inspections may be required and will vary depending on jurisdiction

Final Design, Construction, and Initial Inspections

Permit to Operate for start-up and commissioning, but not necessarily for distribution

Initial Project Development and Preliminary Design

Final Design, Construction, and Initial Inspections

Project Startup and Commissioning

On-Going Monitoring, Reporting, Inspection and Enforcement

- Installation Inspection
- Commissioning
- Permit to Use

- Installation Inspection involves verifying proper installation, calibration, and function of treatment processes
- Project startup and acclimation period

Installation Inspection includes confirmation of:

- Installation of proper monitoring at specified locations
- Use of specified chemicals
- Installation of correct unit process equipment
- Presence of flow diversions
- Provision of back-up wastewater disposal and supply options

Commissioning to verify proper functioning of critical system elements and expected design performance

- Permit to Use is issued by the regulator when sufficient documentation of the commissioning phase has been provided.
- Requirements vary depending on jurisdiction

Initial Project Development and Preliminary Design

- Final Design, Construction, and Initial Inspections
- Project Startup and Commissioning

On-Going Monitoring, Reporting, Inspection and Enforcement

On-Going Monitoring, Reporting, Inspection, and Enforcement

On-going Monitoring and Reporting

Inspection and Enforcement

On-Going Monitoring, Reporting, Inspection, and Enforcement

On-going Monitoring and Reporting

- Evaluation of system performance over time
- Requirements are specified in the Operations Plan

MBR

Monitoring Requirements for LRV Credit:

- ♦ Measure turbidity continuously (sample ≤ 15-min intervals)
 - Effluent turbidity always ≤ 0.2 NTU
- Measure pH continuously
 - 6 < pH < 8

✤ Etc.

On-Going Monitoring, Reporting, Inspection, and Enforcement

Inspection and Enforcement is responsibility of the regulator

- Executed via:
 - Review of performance and water quality reports
 - Routine inspections
 - Enforcement actions for systems that violate regulations
- Regulators define the types of violations, the associated penalties, and the corresponding reference in the regulations

Problem Solving Exercises

Select all that apply:

- A. Avoid costly last-minute revisions to ONWS design
- B. Minimize start-up delays due to permitting issues
- C. Decrease risk of designing a non-compliant system
- D. Reduce risk of non-compliance from insufficient monitoring capabilities
- E. None of the above

- ► A. 100% design
- ▶ B. 10 30% design
- ► C. 60% design
- D. 90% design
- ► E. (A) and (B)

- A. Operations Plan
- **B.** Engineering Report Template
- C. Preliminary Engineering Report
- D. Commissioning Plan
- E. None of the above

A. Final Engineering Report

- **B.** Operations and Maintenance Plan
- ► C. Construction
- **D.** Inspections
- E. All the above

A Permit to Operate allows the System Owner to distribute ONWS water for its intended use

- > A. Installation of proper monitoring at specified locations
- ► B. Use of specified chemicals and treatment processes
- C. Presence of flow diversions
- D. Provision of back-up wastewater disposal and supply options
- E. All the above