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Purpose 

This Technical Report describes the climate-weather generator (ClixWGen) and the background 

climate analysis that was performed to inform the development of the weather generator as part of 

the Long-Term Vulnerability Assessment and Adaptation Planning for the San Francisco Public 

Utilities Commission Water Enterprise. The weather generator described in this document is used to 

produce time series of temperature and precipitation at locations of weather stations used for 

hydrologic (Bay Area and Sierra Nevada) and demand (retail and wholesale service area) modeling. 

These output time series will help explore the effects of variations similar to observed historical 

conditions, as well as climate variability beyond the historical record due to changes in future 

temperature and precipitation.  The weather generator is a component of the climate stress test, which 

creates time series of temperature and precipitation that systematically sample the plausible climate 

conditions that may occur in the future. It is specifically designed to create equally probable time series 

that represent realizations of natural variability. Output from this module will be used to evaluate 

effects of warmer temperatures and associated changes in snowmelt on reservoir operations and assess 

impact of changes in frequency and magnitude of extreme weather events. This module enables 

evaluation of the Regional Water System performance over a range of possible drought and variability 

sequences. The tool will develop drought sequences stochastically based on observed variability and 

use our recently developed method for ranking their severity and recurrence interval.  
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1. Introduction 

Climate change is having a profound impact on California water resources, as evidenced by changes 

in temperature, precipitation, snowpack, and river flows (Vicuna et al. 2007). These changes are 

expected to continue in the future, with more precipitation expected to fall as rain instead of snow. 

This potential change in weather patterns will exacerbate both drought and flood risks and add 

additional challenges for water supply reliability (Sicke et al. 2013). These accelerated changes in 

climate underscore the need for climate change risk assessment and adaptation. Vulnerability-based 

approaches to climate change risk assessment are increasingly desired. In a bottom-up or vulnerability-

based approach, performance of system is systematically evaluated over a range of plausible future 

climates to identify climatic conditions that can cause a system to fail (Brown et al. 2012). This is in 

contrast to scenario-based approaches where system performance is only tested for a given set of 

climate model projections that may not necessarily highlight a system’s vulnerabilities, and where 

results are contingent on the projections and downscaling approach that happen to be used. In the 

bottom-up approach, once the system’s vulnerabilities to climate states have been identified, then the 

level of concern associated with those climate states can be assessed using climate projections (e.g., 

general circulation models or GCMs), historical observations or palaeoclimatological simulations. This 

separation of the articulation of system response to climate using climate stress testing from the use 

of GCM projections of future climate conditions allows a comprehensive understanding of the effects 

of climate changes on the water resource system. When projections of future climate conditions are 

updated based on the best scientific understanding, new downscaling method, etc., the expected risk 

can be updated using the new climate information without having to repeat the entire model 

simulations and assessment. 

Stochastic weather generators (SWGs) are mathematical algorithms that produce long series of 

synthetic weather data at desired spatial and temporal resolution. The parameters of the model are 

conditioned on existing meteorological records to ensure that the characteristics of historical weather 

emerge in the daily stochastic process. Weather generators provide various functions in water 

resources management studies such as extending meteorological records (Richardson 1985); 

supplementing weather data in a region of data scarcity (Hutchinson 1995); disaggregating seasonal 

hydroclimatic forecasts (Wilks 2002); and downscaling coarse, long-term climate projections to fine 

resolution, daily data need in climate impact studies (Kilsby et al. 2007). SWGs can also be used to 
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perform exhaustive assessments of a system’s vulnerability to climate conditions across multiple 

temporal scales, including changes in mean climate and variability (Steinschneider and Brown 2013). 

SWGs can be used to produce a new realization of a time series of weather variables that exhibit the 

same statistics as the original historical record, thus producing an ensemble of time series that samples 

the historical or “natural” variability. By incrementally manipulating one or more parameters in a 

weather generator, one can simulate many climate scenarios that exhaustively explore potential futures 

that exhibit slight differences in nuanced climate characteristics, such as the intensity and frequency 

of daily precipitation, the serial correlation of extreme heat days, or the recurrence of long-term 

droughts. 

CliWxGen is developed to support bottom-up vulnerability assessment of the San Francisco Public 

Utilities Commission (SFPUC) Regional Water System (RWS) to different aspects of climate variability 

and change. The weather generation process using CliWxGen consists of a number of subsequent 

phases. In the first phase, a large ensemble of new realizations of historical climate record to sample 

the natural (stochastic) climate variability in the region. This first step is done using a wavelet 

autoregressive model (WARM) to reproduce a time series of climate variables exhibiting a similar 

spectral structure (low-frequency variability) to the observed data. In the second phase, the simulated 

ensemble of climate realizations are perturbed to alter the historical climate characteristics and to 

represent possible long-term changes in future climate both uniformly and differentially across space 

and time. This approach allows for an assessment beyond the traditional methods of climate sensitivity 

analysis through exhaustive exploration and systematic sampling of climate uncertainties to identify 

future conditions that may lead to vulnerable outcomes regarding system performance.    

There are some important considerations associated with development of weather generators. 

Weather generators should be able to replicate and perturb climate variability important for a given 

system reasonably. For instance, for this vulnerability assessment, low-frequency variability (Dettinger 

and Cayan, 2014) that has been identified in the literature as a characteristic of regional climate needs 

to be replicated. Furthermore, given the geographic and topographic differences in the sources of 

water for the SFPUC, the weather generator needs to produce synthetic time series where the 

covariance structure between weather variables and across sites is maintained.  
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2. Historical Climate of the Regional Water System  

System Description 

A preliminary step for the weather generator development is gaining a good understanding of the 

climatology of the study area. This typically includes analyses of past trends in the relevant climate 

variables such as precipitation and temperature, spatial and temporal correlations across different 

climate variables and meteorological stations, and low-frequency variability or persistence in annual 

precipitation, which may result from atmospheric teleconnections such El Niño–Southern Oscillation 

(ENSO).  

The SFPUC RWS consists of three distinct regions, which differ based on their climatological 

characteristics (Figure 1). These are:  

• Upcountry region, consisting of Hetch Hetchy, Eleanor, and Cherry Valley watersheds. Hetch Hetchy 

reservoir is located in this region provides about 85% of the SFPUC’s total water supply.  

• Peninsula region, consisting of two reservoirs, Crystal Springs and San Andreas that collect runoff 

from the San Mateo Creek watershed. 

• East Bay region, consisting of two reservoirs, San Antonio and Calaveras, which collect water from 

the San Antonio Creek, Upper Alameda Creek, and Arroyo Hondo watersheds in the Alameda 

County. San Antonio Reservoir also receives water from the Upcountry region.  

Together, these watersheds and reservoirs provide high-quality municipal drinking water to the 

SFPUC region. The East Bay and Peninsula watersheds, collectively referred to as the Bay Area 

watersheds, exhibit a similar climatology that is significantly different from the Upcountry watersheds. 

 

 

 

 

 

 



1 

 

 

Figure 1. Map of SFPUC RWS showing the watersheds in the Upcountry, Eastbay, and Peninsula regions 
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2.1. Meteorological Stations 

The meteorological data considered for this study includes daily time-series of precipitation from thirty 

gages and daily time-series of minimum and maximum temperature from twenty-two gages. These 

climate data come from a number of different agencies and institutions including SFPUC, California 

Department of Water Resources (CADWR), the National Weather Services (NWS), Alameda County 

Water District (ALWD), East Bay Regional Park District (EBRD), and Tuolumne Utilities District 

(TUD), and Pacific Gas and Electric (PG&E).   

Error! Reference source not found. and three display the geographic locations of these precipitation 

and temperature gage across the Peninsula, Eastbay and Upcountry regions.  

 

Figure 2. Precipitation gage locations in the SFPUC RWS across the Peninsula, Upcountry and 
Eastbay regions 
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Figure 3. Temperature gage locations in the SFPUC RWS across the Peninsula, Upcountry and 
Eastbay regions 

General information regarding these gage stations, including the geographic region and coordinates, 

altitude, and the starting and ending year of the data collection periods are presented in Table 1 

(Precipitation) and Table 2 (Temperature) respectively. Descriptive statistics associated with the 

meteorological data from the same gages, including annual means, minimums, maximum and 

coefficient of variations are shown in Appendix I. 
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Table 1. Summary information for the precipitation gages in the SFPUC system 

 Station Label Agency Region Latitude (°) Longitude (°) Altitude (ft.) Start year End year Period (yrs) 

1 Hetch Hetchy HTH SFPUC Upcountry 37.948 -119.787 3858 1930 2017 87 

2 Early Intake IN SFPUC Upcountry 37.876 -119.957 2355 1930 2017 87 

3 Moccasin MCN SFPUC Upcountry 37.811 -120.299 938 1930 2017 87 

4 Cherry Valley CVM SFPUC Upcountry 37.976 -119.917 4765 1952 2017 65 

5 Yosemite YOS NWS Upcountry 37.740 -119.583 3985 1956 2017 61 

6 Sonora SON TUD Upcountry 37.962 -120.325 1750 1956 2017 61 

7 Buck Meadows BKM SFPUC Upcountry 37.823 -120.098 3200 1999 2017 18 

8 Tuolumne Meadows TUM CADWR Upcountry 37.873 -119.350 8600 1985 2017 32 

9 Pilarcitos PLD SFPUC Peninsula 37.548 -122.422 700 1909 2017 108 

10 San Andreas Res SA SFPUC Peninsula 37.579 -122.409 452 1908 2017 109 

11 Lower Crystal Springs LCS SFPUC Peninsula 37.533 -122.363 424 1915 2017 102 

12 Upper Crystal Springs UCS SFPUC Peninsula 37.512 -122.354 373 1908 2017 109 

13 Sawyer Camp SC SFPUC Peninsula 37.568 -122.388 344 1979 2017 38 

14 North San Andreas NSN SFPUC Peninsula 37.612 -122.443 617 1979 2017 38 

15 Davis Tunnel DT SFPUC Peninsula 37.578 -122.430 758 1979 2017 38 

16 Half Moon Bay HMB NWS Peninsula 37.473 -122.443 27 1939 2017 78 

17 San Antonio R SANT SFPUC East Bay 37.577 -121.846 498 1968 2017 49 

18 Calaveras CAL SFPUC East Bay 37.488 -121.821 822 1915 2017 102 

19 Alameda East Portal AE SFPUC East Bay 37.559 -121.859 334 1987 2017 30 

20 Sunol SUNO SFPUC East Bay 37.591 -121.884 242 1907 2017 110 

21 Poverty POV SFPUC East Bay 37.443 -121.771 2066 1998 2017 19 

22 Rose Peak RSP EBRP East Bay 37.502 -121.736 3060 1995 2017 22 

23 Livermore Airport LVK NWS East Bay 37.683 -121.790 437  - 2017 - 

24 San Jose SJ NWS East Bay 37.359 -121.924 51 1998 2017 19 

25 Mt Hamilton  HML NWS East Bay 37.344 -121.643 4206 1948 2017 69 

26 San Francisco Int. Airport  SFO NWS Peninsula 37.620 -122.365 8 1945 2017 72 

27 Fremont FRE ACWD East Bay - - - 1871 2017 146 

28 Moffett Federal Airfield MOF NWS South Bay 37.415 -122.050 32 1945 2017 72 

29 Newark NEW NWS East Bay 37.515 -122.033 10 1942 2017 75 

30 Pleasanton PLE SFPUC East Bay 37.677 -121.901 - 1914 2001 87 
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Table 2. Summary information for the temperature gages in the SFPUC system 

 Station Label Agency Region Latitude (°) Longitude (°) Altitude (ft.) Start year End year Period (yrs) 

1 Hetch Hetchy HTH SFPUC Upcountry 37.948 -119.787 3858 1930 2017 87 

2 Early Intake IN SFPUC Upcountry 37.876 -119.957 2355 1930 2017 87 

3 Moccasin MCN SFPUC Upcountry 37.811 -120.299 938 1930 2017 87 

4 Cherry Valley CVM SFPUC Upcountry 37.976 -119.917 4765 1952 2017 65 

5 Buck Meadows BKM SFPUC Upcountry 37.823 -120.098 3200 2005 2017 12  

6 Tuolumne Meadows TUM CADWR Upcountry 37.873 -119.350 8600 1985 2017 32 

7 Paradise Meadow PDS CADWR Upcountry 38.047 -119.670 7650.00 1987 2017 30 

8 Slide Canyon SLI CADWR Upcountry 38.092 -119.430 9200.00 2005 2017 12 

9 Horse Meadows HRS CADWR Upcountry 38.158 -119.662 8400.00 2005 2017 12 

10 Pinecrest PCR PG&E Upcountry 38.200 -119.983 5600.00 1996 2017 21 

11 Poverty POV SFPUC East Bay 37.443 -121.771 2066 1998 2017 19 

12 Rose Peak RSP EBRP East Bay 37.502 -121.736 3060 1997 2017 20 

13 Livermore Airport  LVK NWS East Bay 37.683 -121.790 437 1903 2017 114 

14 San Jose SJ NWS East Bay 37.359 -121.924 51 1998 2017 19 

15 Spring Valley SVA SFPUC Peninsula 37.563 -122.437 1075 1998 2017 19 

16 Pulgas PUL SFPUC Peninsula 37.475 -122.298 644 1997 2017 20 

17 Half Moon Bay HMB NWS Peninsula 37.473 -122.443 27 1939 2017 78 

18 San Francisco Int. Airport SFO NWS Peninsula 37.620 -122.365 8 1945 2017 72 

19 Mt Hamilton HML NWS East Bay 37.344 -121.643 4206 1948 2017 69 

20 Moffett Federal Airfield MOF NWS South Bay 37.415 -122.050 32 1945 2017 72 

21 Burlingame BRL NWS Peninsula 37.583 -122.350 10.00 1946 1978 32 

22 Newark NEW NWS East Bay 37.515 -122.033 10 1942 2017 75 
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As Table 1 and Table 2 show, available meteorological data from the temperature and precipitation 

gages vary substantially based on their length of records. Long time-series of daily meteorological data 

(e.g., 50 years or longer), which is useful to assess the regional climatology is available for only 

seventeen precipitation gages and nine temperature gages (Figure 4).  

 

Figure 4. Length of records for the considered precipitation and temperature gages in study region. 
The stations in the Upcountry, Peninsula and East Bay regions are shown in blue, orange, and pink 
colors respectively. Vertical lines mark the analysis period from 1955-2011.  
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There are also substantial altitudinal differences between the gage stations across the three regions. 

The gage elevations range from about 1000 to 9200 feet in the Upcountry region, 0 to 4200 feet in 

East Bay region, and 0 to 1075 feet in the Peninsula region respectively (Figure 5).   

 

Figure 5. Station elevations for the precipitation and temperature metereological gage in the study 
region. The stations in the Upcountry, Peninsula and East Bay are shown in blue, orange, and pink 
colors respectively. 
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2.2. Spatial Correlations of Climate Variables 

The correlational structure of daily precipitation and temperature is explored to understand the spatial 

heterogeneity across the three regions. The correlation analysis is carried out using the Pearson 

correlation coefficient, which measures the linear dependence between two time-series of climate 

variables from different locations. A Pearson’s r-value of 1 means that the time-series move in perfect 

unison (total positive linear correlation), whereas a correlation of -1 means the time-series move in the 

complete opposite direction (total negative linear correlation). A correlation of 0 means no 

relationship. Due to the relatively short length of the common observation periods of climate 

variables, the spatial correlations analysis is carried over twenty-six out of thirty precipitation gages 

and fifteen out of twenty-two temperature gages.  

Figure 6 shows the correlation matrix of daily precipitation from the twenty-six gage stations with 

sufficiently long records. A blue color indicates a high degree of correlation (Pearson’s r ~ 0.5 to 1), 

whereas and a red color indicates a lower degree of correlation (Pearson’s r ~ 0 to 0.5) between the 

weather variables from different stations. The gages from the same geographical region are highly 

correlated (Pearson’s r > 0.75). Daily precipitation in the Peninsula and East Bay regions is also 

observed to correlate well (Pearson’s r ~ 0.6 – 0.8). Stations in the Upcountry region are not correlated 

well with the stations in the Peninsula or East Bay regions although the correlations are still positive 

(Pearson’s r ~ 0.2 - 0.3).  

Similarly, Figure 7 displays the spatial correlations between daily temperatures from the fifteen gage 

stations. In contrast to the spatial correlations shown for precipitation (Figure 6), daily temperature is 

highly correlated within the study area across all three regions (Pearson’s r > 0.8). The only exception 

is the Half Moon Bay (HMB), which is found to be less correlated with all the other stations (r > 0.65).  
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Figure 6. Spatial correlations in the observed daily precipitation across the gages. Values indicate the 
Pearson’s r value for the given pair of gage stations in the x and y-axes. A Pearson’s r-value of 1 means 
strong positive correlation between the stations, whereas a value of -1 means strong negative 
correlation. A Pearson’s r-value of 0 means no linear correlation.   
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Figure 7. Spatial correlations in the observed daily temperature across the gages. Values indicate the 
Pearson’s r value for the given pair of gage stations in the x and y-axes. A Pearson’s r-value of 1 means 
strong positive correlation between the stations, whereas a value of -1 means strong negative 
correlation. A Pearson’s r-value of 0 means no linear correlation.   

 

 

 



10 

 

2.3. Trends in Observed Temperature and Precipitation 

Across California, temperatures have shown a warming trend in the past century, with the state as a 

whole experiencing an increase of 1.1 to 2°F in mean temperature over the past century (i.e., from 

early 1900s to 2010s) (CA DWR 2015). Seasonal trends indicate a greater temperature increase in 

summer months than in winter months. Studies of precipitation trend in the state have yielded 

inconclusive results. While northern California shows increases in both mean annual precipitation and 

number of rainfall days, these increases are not statistically significant. Given these well-documented 

trends in the 20th century in California’s climate (Killam et al. 2014), we conduct time-series analyses 

on the trends for annual and seasonal temperature and precipitation averages across the SFPUC 

watersheds to determine the nature of the trends (i.e. deterministic or stochastic), and understand the 

spatial and temporal variation in these trends.  

In this study, we evaluate the annual and seasonal trends in minimum temperature (Tmin) and maximum 

temperature (Tmax) from the year 1956 to 2011. For the trend analysis, we only consider the stations 

with long-enough data, i.e., over the 56-year analysis period. These stations are: Half Moon Bay (HMB) 

and San Francisco Airport (SFO) for the Peninsula region; Mt Hamilton (HML), Livermore (LVK) 

and Newark (NEW) for the East Bay region; and Moccasin (MCN), Early Intake (IN), and Hetch 

Hetchy (HTH) for the Upcountry region respectively. For annual trend analysis, we average daily Tmin 

and Tmax values from each station over each water year (October to September). In the case of seasonal 

trend analysis, we average the same daily Tmin and Tmax values over a dry season (from April to 

September) and a wet season (from October to March).  

Annual trends in Tmin over the Upcountry, Peninsula, and East Bay regions is shown in Figure 8. A 

positive trend is observed in all three regions, with the East Bay trend being the strongest.  

Annual trends in Tmax over the same three regions are shown in Figure 9. Unlike Tmin, the trend 

directions is not the same over the three regions, i.e., a positive trend is observed for Upcountry and 

Peninsula regions, whereas no major trend is detected for East Bay.  
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Figure 8. Annual averages of daily minimum temperatures (Tmin) across the Upcountry, Peninsula, 
and East Bay regions. Results are shown for the analysis period from the year 1956 to 2011. The blue 
lines indicate the linear trend fitted to the underlying data. The shaded regions show the 95% 
confidence interval for the associated trend line.  

 

 

Figure 9. Annual averages of daily maximum temperatures (Tmax) across the Upcountry, Peninsula, 
and East Bay regions. Results are shown for the analysis period from the year 1956 to 2011. The blue 
lines indicate the linear trend fitted to the underlying data. The shaded regions show the 95% 
confidence interval for the associated trend line. 
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Historical trends in Tmin and Tmax from the same gages are also evaluated for the dry and wet seasons 

separately for further analysis. Tmin exhibits a positive trend in all three regions and both seasons 

(Figure 10). The strongest trends are observed in the East Bay region. In contrast, a positive Tmax trend 

is observed for the Upcountry and Peninsula regions, whereas the direction of the trend for the East 

Bay region is unclear (Figure 11).  

 

 

Figure 10. Dry season (April to September) and wet season (October to March) averages of daily 
minimum temperatures (Tmin) across the Upcountry, Peninsula, and East Bay regions. Results are 
shown for the analysis period from the year 1956 to 2011. Blue lines show linear trend fitted over the 
data. Shaded regions show 95% confidence interval for the fitted trend line.  
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Figure 11. Dry season (April to September) and wet season (October to March) averages of daily 
maximum temperatures (Tmax) across the Upcountry, Peninsula, and East Bay regions. Results are 
shown for the analysis period from the year 1956 to 2011. Blue lines show linear trend fitted over the 
data. Shaded regions show 95% confidence interval for the fitted trend line. 

Finally, the annual and seasonal trends in daily Tmin and Tmax across the three regions are tested for 

statistical significance. For this purpose, we apply a nonparametric Mann Kendall trend test. Results 

from the Mann Kendall test show that all annual and seasonal trends previously identified for Tmin are 

statistically significant, i.e., results in a p.value of less than 0.05. For Tmax, all trends identified for 

Upcountry and Peninsula regions are statistically significant (Table 3). 
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Table 3. Mann Kendall trend analysis results on annual and seasonal averages of daily Tmin and Tmax 
for the Upcountry, Peninsula, and East Bay regions. Results are based on the analysis period from the 
year 1956 to 2011. Columns 4 and 5 show the computed value of Man Kendall’s tau statistic and the 
associated p-p-value of 0.05 or higher means that the null hypothesis (i.e., no trend) cannot be rejected.  

Variable Region Season tau p-value 

Tmin 

Upcountry 

Dry 0.368 < 0.0001 

Wet 0.349 < 0.0001 

Annual 0.375 < 0.0001 

Peninsula 

Dry 0.419 < 0.0001 

Wet 0.268 0.0013 

Annual 0.38 < 0.0001 

East Bay 

Dry 0.618 < 0.0001 

Wet 0.542 < 0.0001 

Annual 0.565 < 0.0001 

Tmax 

Upcountry 

Dry 0.245 0.0035 

Wet 0.227 0.0064 

Annual 0.199 0.0165 

Peninsula 

Dry 0.256 0.0023 

Wet 0.249 0.0027 

Annual 0.29 0.0005 

East Bay 

Dry 0.038 0.6494 

Wet 0.123 0.1397 

Annual 0.062 0.4554 

 

Overall, the Tmin and Tmax trends shown in Figure 8 through Figure 11 and in Table 3 are important to 

understand the possible range of changes in the spatial and temporal availability of water resources. 

The positive trends detected for the Upcountry region is especially important because it can affect the 

phase of precipitation and thus not only the volume but also the timing of flows into the Upcountry 

reservoirs (e.g. change in precipitation from snow to rain). Earlier analyses have shown that over the 

last several decades, rising temperatures in the Sierra Nevada and northern California trigger 
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decreasing snowpack and earlier snowmelt (Barnett et al. 2008). For the SFPUC, these changes change 

water availability based on the structure of their water rights.  

These results generally agree with the previous studies done by SFPUC, which concluded that the 

average daily temperatures have increased over the 79-year period from 1930 to 2008, but increases 

were not consistent. According to SFPUC, there are no apparent trends in average daily temperatures 

from about 1930 to 1960. From about 1960 to the present average daily temperatures at Hetch-Hetchy 

(HTH) and Cherry Valley (CHV) increase, but the increase is due to an increase in daily minimum 

temperatures. Daily maximum temperatures show no significant trend. Also, temperature records at 

Moccasin at 938 ft. Elevation do not show preferential increases in daily minimum temperatures 

relative to daily average or daily maximum temperatures. These findings by the SFPUC also similar to 

the results from other climatic studies in the region.  Daily minimum temperatures in the Sierras have 

generally increased since 1900, with most of the increase occurring before 1930 and since 1960 

(Behnke, R. 2011). Daily minimum winter temperatures in the Sierras increased over 1.5oC (2.7oF) 

between 1950 and 1999, while winter average daily maximum temperatures increased over 0.8oC 

(1.4oF) (Bonfils et al. 2008). 

Similar trend analyses were also conducted for daily precipitation records across the different stations 

(see Appendix III, shown for each calendar month). None of the gages showed statistically significant 

trends in precipitation, a finding consistent with that in the existing literature (Killam et al. 2014).  

2.4. Low-Frequency Variability in Annual Precipitation 

The impact of large-scale climate patterns on precipitation in California is well documented (Dettinger 

et al. 1998). El-Nino Southern Oscillation (ENSO) has been shown to influence precipitation in the 

State, especially in Southern California. Evidence for the effect of ENSO on precipitation in the Delta 

region is inconclusive. Understanding these effects is important because they are typically the source 

of structured low frequency variability found in an observed weather time series. Since low frequency 

variability is a key factor in the occurrence of drought, preserving these effects is required to create a 

weather generator that reproduces the local climate conditions.  

We investigate the historical annual precipitation record for presence of low frequency variability. In 

the common practice, there are two major methods for identifying persistence characteristics in time 

series: those which measure autocorrelation and those which perform a Fourier or wavelet analysis. 
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Autocorrelation-based methods have known limitations in reproducing the spectral signature of the 

time series, i.e., observed frequencies at specific wavelengths. Wavelet-based methods, on the other 

hand, are known to be better at preserving periodic or quasiperiodic behaviors seen in climate time-

series (Kwon et al. 2007). In this work, we apply the latter method of wavelet analysis to assess the 

historical low-frequency variability of annual precipitation. 

In simple terms, wavelet analysis or transform is a common tool for orthogonal decomposition of a 

time-series across the time-frequency domain. By applying a wavelet analysis, one can determine both 

the dominant modes of variability (low-frequency signals) and how those modes change over time. A 

continuous wavelet transform of a time-series is applied by estimating the wavelet power spectrum in 

the Fourier space using a discrete Fourier transform (for a detailed description, see Torrence and 

Compo (1988)).  

Using wavelet analysis, one can explore the dominant periods of the time series and also determine 

how these dominant periods vary over time. For doing this, a wavelet analysis provides two outputs: 

a scale-integrated (or local) and a global (time-integrated) wavelet power spectrum. The former output 

(local spectrum) shows the variance of computed power coefficients over time, whereas the latter 

output (global spectrum) show the time-integrated variance of power coefficients at every scale. 

Global wavelet spectra are obtained by averaging the wavelet power over all local wavelet spectrum 

along the time axis.  

Figure 12 shows the results from the wavelet analysis of annual precipitation for the Hetch Hetchy 

station in the Upcountry region. The local wavelet spectrum is shown on the left (Figure 12-a) and the 

global wavelet spectrum is shown on the right (Figure 12-b). The local wavelet spectrum shows 

significant power spectra at Fourier periods of about 5 and 15 years respectively (marked by the black 

contours), with respect to a 90% confidence level compared to “red noise”. The temporal structure 

of the entire time series is assessed using by global wavelet spectrum that shows statistically significant 

low-frequency signals at Fourier periods of 11, 12 and 13, corresponding to frequency values of 12.1, 

13.6 and 14.9 years respectively. A similar low-frequency variability pattern is also shown for the 

Pilarcitos gage station in the Peninsula region (Figure 13). In contrast to the results from Hetch Hetchy 

station, annual precipitation from the Pilarcitos station shows a relatively stronger multi-decadal 

variability signal at about 15 years.  
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The quasi-periodic 15-year cycle in the precipitation signal for the Hetch Hetchy (Figure 12) and 

Pilarcitos (Figure 13) stations has been identified previously in the literature but surprisingly has 

received little further attention. This signal is also visible in the paleo-records for the past 200 years, 

but not before that (Meko et al. 2014). The climatic patterns responsible for this signal are not currently 

well understood. In addition to the strong signal at 15-year frequency, results also show a ‘bump’ at 

about five years (Figure 13). While not significant at the 90% confidence level, this second signal is 

likely to be associated with the ENSO phenomena.  

 

Figure 12. Wavelet analysis results for the Hetch Hetchy gage station (1930-2016): a) Local wavelet 
power spectrum plot for annual precipitation, b) Global wavelet spectrum plot for the same 
precipitation data. The local wavelet spectrum (a) displays the strength of each signal (shown in y-
axis) locally around the given time (shown in x-axis). The strength of the signal increases in the color 
direction of from red to yellow. The black contours show the scales at which power spectra appear 
greater than 90% confidence for a white-noise process. The cross-hatched regions on either end 
indicate the “cone of influence,” where edge effects become important. The global wavelet plot (b) 
summarizes the local information by removing the time-dimension. The dashed red line shows the 
significance level for the global wavelet spectrum. 
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Figure 13. Wavelet analysis results for the Pilarcitos gage station (1930-2016): a) Local wavelet power 
spectrum plot for annual precipitation, b) Global wavelet spectrum plot for the same precipitation 
data. The local wavelet spectrum (a) displays the strength of each signal (shown in y-axis) locally 
around the given time (shown in x-axis). The strength of the signal increases in the color direction of 
from red to yellow. The black contours show the scales at which power spectra appear greater than 
90% confidence for a white-noise process. The cross-hatched regions on either end indicate the “cone 
of influence,” where edge effects become important. The global wavelet plot (b) summarizes the local 
information by removing the time-dimension. The dashed red line shows the significance level for the 
global wavelet spectrum. 
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3. Stochastic Weather Generator for the SFPUC system 

This section provides a technical overview of the CliWxGen; the stochastic weather generator 

developed for the SFPUC RWS. Figure 14 illustrates the four major phases of the stochastic weather 

generator.  

In Phase [1], the goal is to produce stochastic simulations of historical annual precipitation over the 

study region. If the climatology is homogenous within the study area, location-specific annual 

precipitation data can be area-averaged to obtain a single, representative time-series. However, if there 

are significant differences in climatology within the region like in this study, simple-averaging is not 

appropriate. Instead, a principal component analysis (PCA) can be applied to preserve the variability 

between different locations. The stochastic time-series generation is applied by a wavelet 

autoregressive model (WARM) on the represented annual precipitation series (Kwon et al. 2007). The 

WARM procedure first decomposes the annual series into significant low-frequency signals and the 

residual error term (noise). Each low-frequency component and the residual error is then simulated 

stochastically using best-fit linear autoregressive (AR) models. Finally, the simulated low frequency 

and noise component(s) are aggregated to obtain the simulated representative series of annual 

precipitation.  

In Phase [2], simulated annual series from Phase [1] is disaggregated in time and space to obtain daily 

climate variables (precipitation, temperature, humidity, etc.) at all locations. This is done in three 

subsequent steps. First, the simulated annual series is inverted to its original scale and disaggregated 

spatially into annual precipitation series for all gage stations (Phase [2.1]). Next, the inverted series is 

disaggregated into monthly values using the method of fragments, a non-parametric resampling 

approach widely applied in climate simulation and disaggregation (Silva and Portela 2012) (Phase [2.2]). 

Finally, a k-nearest neighbors (KNN) resampling algorithm is used to further disaggregate the monthly 

precipitation series into daily values for all weather variables (i.e., precipitation, and minimum, average, 

and maximum temperature), while preserving the spatial and seasonal climate characteristics (In phase 

[2.3]). At the end of Phase 2, a complete set of climate realizations are obtained, which sample 

historical climate variability.  

In Phase [3], the generated dataset of daily, multi-variable, multi-site climate realizations are reduced 

to a smaller set of realizations. This step is not mandatory in the stochastic weather generation process 

but is desired to reduce the computational challenges, i.e., due to the need to store and simulate large 
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number of climate realizations in hydrosystem models. In this phase, we carefully select a small set of 

realizations that can span the initial variability range. This is done by first selecting criteria for ranking 

of the climate realizations (e.g., drought severity, extreme precipitation), and then subset from the 

initial set of realization using an appropriate statistical method such as sequent peak algorithm 

(Whateley et al., 2016).  

In Phase [4], daily, multi-site, multi-variable climate realizations are perturbed to simulate a wide 

range of future climate changes. This is the final phase of the stochastic weather generator, where we 

perturb the underlying statistics of climate realizations to obtain a range of scenarios that represent 

both historical (natural) climate variability and a possible range of climate changes. This is done 

through different statistical procedures for the temperature and precipitation variables as explained 

next. For temperature variables (i.e., minimum, average, and maximum daily temperature), additive 

change factors are used to impose a linear increase over historical conditions, starting at zero and 

ending at the level of specified temperature increase (e.g., 4°C). For precipitation, multiplicative change 

factors are used to used to linearly perturb the historical mean values, starting from 1 and ending at 

the level of specified change (e.g., 10%). 
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Figure 14. The flow chart of the stochastic weather generator developed for the SFPUC RWS 
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3.1. Historical Climate Data Used in the Weather Generator 

When developing the weather generator, it is desirable to have a weather record that is long enough, 

e.g., 50 years or more, to provide a better representation of the climatological features such as trends 

and low-frequency variability. Also, the resampling techniques used in the stochastic weather generator 

(e.g., k-nearest neighbors) provides more diverse outcomes when the underlying input climate series 

is long enough. In most studies, long, continuous records of weather series may not be available, which 

poses a limitation for weather generator development. To circumvent this issue, weather generators 

often make use of gridded climate products, where corresponding time series of temperature of 

precipitation are available for large study regions. The wavelet analysis conducted on annual 

precipitation in Section 2.4 identified a low-frequency signal of about 15 years, which is considered to 

be as relatively long wavelength.  

As previously shown in Section 2.1, the length of the observed daily temperature records varies across 

the stations, and only a limited number of stations provides long, continuous data. In order address 

this challenge, we investigate the suitability of using gridded climate data by comparing it with the local 

observations. As a gridded climate product, we evaluate the suitability of the CONUS dataset over the 

study region, covering a period of more than 100 years (from 1901 to 2008) at 6.25 km2 spatial 

resolution (Livneh et al., 2013). The overlap of the CONUS grid cells with the precipitation and 

temperature gage stations are shown in Figure 16 and Figure 16 respectively.  

We compare the daily precipitation from the CONUS dataset to the selected gage stations across the 

HTH and MCN stations in Upcountry, SFO, and HMB in Peninsula region, and LVK Airport and 

NEW in East Bay region (Figure 17). The gridded CONUS dataset is not able to replicate the 

observation precipitation adequately, especially for lower-magnitude precipitation events.  

Similarly, Figure 18 and Figure 19 show a comparison of daily Tmin and Tmax values in the observed 

and gridded dataset for the same stations. Before the comparison, the gridded temperature series is 

adjusted by a lapse rate of 6.5 °F per km (3.56 °F per 1,000 feet) to account for the altitudinal 

differences between the gage stations and the average grid elevation (Maurer et al. 2002). For Tmin, we 

observe a negative bias for Tuolumne station, and a positive bias for the Newark station (Figure 18). 

For Tmax, we observed a slight negative bias for the SFO and HMB stations in the Peninsula region 

(Figure 19). 
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Figure 15. CONUS data grid cells (at 6.25 km2 spatial resolution) and the precipitation gage stations 
in the SFPUC RWS: a) Peninsula region, b) East Bay region, and c) Upcountry region 
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Figure 16. CONUS data grid cells (at 6.25 km2 spatial resolution) and the temperature gage stations 
in the SFPUC RWS: a) Peninsula region, b) East Bay region, and c) Upcountry region 
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Figure 17. Comparison of daily precipitation from observed (gage) data and CONUS dataset over the 
1956-2011 analysis period. Results are shown for the Hetch Hetchy (HTH), Tuolumne (TUM), San 
Francisco Airport (SFO), Half Moon Bay (HMB), Livermore (LVK), and Newark (NEW) stations 
respectively. 
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Figure 18. Comparison of daily minimum temperatures from observed (gage) data and CONUS 
dataset over the 1956-2011 analysis period. Results are shown for the Hetch Hetchy (HTH), Tuolumne 
(TUM), San Francisco Airport (SFO), Half Moon Bay (HMB), Livermore (LVK), and Newark (NEW) 
stations respectively. 
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Figure 19. Comparison of daily maximum temperatures from observed (gage) data and CONUS 
dataset over the 1956-2011 analysis period. Results are shown for the Hetch Hetchy (HTH), Tuolumne 
(TUM), San Francisco Airport (SFO), Half Moon Bay (HMB), Livermore (LVK), and Newark (NEW) 
stations respectively. 
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Overall, the gridded precipitation is found to be not suitable for conditioning the weather generator. 

Instead, the thirteen precipitation gages that have the longest records and are representative of 

precipitation across the three regions are used as inputs (Table 4).  

Combined with the CONUS daily gridded temperature dataset, the stochastic weather generator is 

conditioned on the fifty-five-year historical period from 1956 to 2011. 

 

Table 4. The final precipitation dataset used in the weather generator 

Station 
Short 
name 

Region 
Period of record              
(full range) 

Period of record 
(used) 

Upper Crystal Springs UCS Peninsula 1908 – 2017 1956 - 2011 

Lower Crystal Springs LCS Peninsula 1915 - 2017 1956 - 2011 

San Andreas SA Peninsula 1908 - 2017 1956 - 2011 

Pilarcitos PLD Peninsula 1909 - 2017 1956 - 2011 

Sunol SUNO East Bay 1907 - 2017 1956 - 2011 

Calaveras CAL East Bay 1915 - 2017 1956 - 2011 

Mt. Hamilton HML East Bay 1948 - 2017 1956 - 2011 

Hetch Hetchy SFO Upcountry 1930 - 2017 1956 - 2011 

Early Intake IN Upcountry 1930 - 2017 1956 - 2011 

Moccasin MCN Upcountry 1930 - 2017 1956 - 2011 

Cherry Valley CVM Upcountry 1952 - 2018 1956 - 2011 

Yosemite YOS Upcountry 1956 - 2017 1956 - 2011 

Sonora SON Upcountry 1956 - 2017 1956 - 2011 
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3.2. Principal Component Analysis on Annual Precipitation 

In order to generate new realizations of the historical climate, the first step is to obtain a representative 

time-series annual precipitation over the study region, i.e., SFPUC RWS. Typically, a representative 

time-series is provided by area-averaging the precipitation data at different gage locations across the 

study area. However, spatial-averaging may not be appropriate in cases where the precipitation shows 

high spatial variability, as for the case of the SFPUC system (Figure 6 and Appendix I). In such cases, 

a principal component analysis (PCA) can be applied to preserve the variability between the stations 

that would be lost if they were simply averaged together.  

In simple terms, PCA is a dimension-reduction method that can be used to transform a large number 

of (possibly) correlated variables into a (smaller) number of variables called principal components. 

PCA finds a new set of dimensions such that all the dimensions are orthogonal (and hence linearly 

independent) and ranked according to the variance of data among them. The first principal component 

accounts for as much of the variability in the data as possible, and each succeeding component 

accounts for as much of the remaining variability as possible. Application of PCA includes a number 

of sequential steps including calculation of the covariance matrix of the data points, the eigen vectors, 

and corresponding eigen values, and sorting the eigen vectors according to their eigen values in the 

decreasing order.  

For this study, we apply PCA on the historical annual precipitation series (1956-2011 period) from the 

thirteen gage stations to identify one or few principal components that can adequately explain the 

variance within the full set of data. The results of the PCA including the percentage of variance 

explained by each principal component as well as the loading factors for all precipitation gage stations 

for all components is shown in Table 5. The first principal component explains about 88% of the total 

variance, whereas the first two components together account for the 94% of the total variance in the 

historical annual precipitation record.  
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Table 5. Summary of results from the PCA on annual precipitation data across the thirteen gage stations. The top row shows the percentage 
of variance explained by each principal component. The remaining rows show the computed gage station loadings for each component.  

Stations 
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 

(88%) (4.9%) (1.3%) (1.2%) (0.9%) (0.6%) (0.5%) (0.4%) (0.2%) (0.2%) (0.1%) (0.1%) (0.1%) 

Calaveras 0.18 -0.13 0.05 -0.18 0.06 -0.31 0.10 0.08 -0.56 0.24 -0.21 -0.14 -0.61 

Cherry 0.44 0.34 -0.35 0.32 0.02 -0.20 0.36 -0.39 -0.03 0.16 -0.23 0.20 0.17 

Hamilton 0.19 -0.05 0.58 0.57 -0.38 -0.34 -0.13 0.11 0.02 -0.01 0.07 -0.03 0.03 

HetchHetchy 0.33 0.21 -0.18 0.06 0.34 -0.25 -0.29 0.24 0.18 -0.58 -0.12 -0.30 -0.12 

Intake 0.30 0.14 -0.05 0.06 0.33 0.05 -0.21 0.20 -0.10 0.25 0.68 0.38 -0.10 

LowCS 0.21 -0.35 -0.05 -0.32 0.02 -0.37 -0.38 -0.18 0.46 0.42 -0.11 -0.01 0.11 

Moccasin 0.25 0.05 0.30 0.18 0.38 0.55 -0.11 0.09 0.00 0.36 -0.35 -0.29 0.12 

Pilarcitos 0.31 -0.52 -0.44 0.22 -0.34 0.33 -0.28 -0.01 -0.26 -0.14 0.01 -0.03 0.03 

SanAndreas 0.27 -0.33 0.05 0.00 0.05 0.10 0.60 -0.06 0.36 -0.05 0.37 -0.36 -0.20 

Sonora 0.29 0.13 0.39 -0.34 -0.07 0.19 -0.19 -0.64 -0.16 -0.31 0.12 0.05 -0.06 

Sunol 0.17 -0.16 0.10 -0.27 0.13 -0.23 0.18 0.19 -0.41 -0.07 0.12 -0.17 0.71 

UppCS 0.21 -0.30 0.22 -0.12 0.12 0.09 0.22 0.26 0.14 -0.26 -0.34 0.67 -0.04 

Yosemite 0.33 0.42 -0.04 -0.39 -0.57 0.17 0.05 0.41 0.13 0.12 -0.03 -0.07 -0.01 
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PCA results are further investigated by a biplot (Figure 20). The x and y-axes of the biplot show the 

first pair of principal components (i.e., PC1 and PC2) and to what extent they can explain the variance 

in annual precipitation data from each of the thirteen gage stations. PC1 explains most of the variance 

in precipitation gages, except for the Hamilton station, which is more strongly associated with PC2. 

Most stations within the Peninsula and East Bay regions show a similar response profile (indicated by 

the direction of the vectors in Figure 20), whereas the stations in the Upcountry region are found to 

be different than the stations in the former two regions.   

 

 

Figure 20. PCA biplot for historical annual precipitation from thirteen gage stations. The x and y-axes 
show the first and the second principal components of the PCA. The values in the parentheses show 
the total variance explained. The points represent the scores of the observations on the principal 
components. The cosine of the angle between a vector and an axis indicates the importance of the 
contribution of the corresponding variable to the axis dimension. 
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Wavelet analyses are also performed on the first two principal components to evaluate the spectral 

signature of each component. PC1 has a significant low-frequency variability signal at about 15 years, 

similar to the previously detected low-frequency signal of 12-15 years in the historical precipitation 

data (Figure 21).  

 

 

Figure 21. Wavelet analysis on the PC1 of historical annual precipitation: a) the local wavelet spectrum 
displaying the strength of each signal locally around the given time (shown in x-axis), b) the global 
wavelet plot, which is obtained by integrating the local wavelet spectrum over time. In a, the black 
contours show the scales at which power spectra appear greater than 95% confidence for a red-noise 
process. The cross-hatched regions on either end indicate the “cone of influence,” where edge effects 
become important. In b, the dashed red line shows the significance, assuming the same significance 
level and background spectrum as in the local wavelet power spectra. 

 

In contrast to the PC1, the second principal component does not show any statistically significant 

low-frequency signal (Figure 22).   
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Figure 22. Wavelet analysis on the PC2 of historical annual precipitation: a) the local wavelet spectrum 
displaying the strength of each signal locally around the given time (shown in x-axis), b) the global 
wavelet plot, which is obtained by integrating the local wavelet spectrum over time. In a, the black 
contours show the scales at which power spectra appear greater than 95% confidence for a red-noise 
process. The cross-hatched regions on either end indicate the “cone of influence,” where edge effects 
become important. In b, the dashed red line shows the significance, assuming the same significance 
level and background spectrum as in the local wavelet power spectra. 

 

Finally, we evaluated the correlations between the first two principal components and the observed 

average sea level pressures (SLP) and sea surface temperatures (SST) to have a better understanding 

of the underlying climate drivers. Figure 23 shows that PC1 is correlated with both SLP and SST in 

areas typically associated with El Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation 

(PDO). However, PC2 is not seen to be associated with any climate patterns (Figure 24).  

Based on the results presented in this section, we only apply the WARM to the first principal 

component of annual precipitation.  
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Figure 23. Correlation plots: a) PC1 vs. averaged annual sea surface temperature (SST) (b) PC1 vs. 
averaged annual sea level pressure (SLP) 
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Figure 24. Correlation plots: a) PC2 vs. averaged annual sea surface temperature (SST) (b) PC2 vs. 
averaged annual sea level pressure (SLP) 
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3.3. Stochastic Simulations of the PC1 of Annual Precipitation 

After choosing the PC1 as a representative series of annual precipitation, the next task is to generate 

new stochastic realizations of this series. For this purpose, we use a wavelet autoregressive model 

(WARM), a time-series simulation approach that combines simple autoregressive models with wavelet 

decomposition (Kwon et al. 2007; Steinschneider and Brown 2013). Briefly, WARM decomposes a 

univariate time series into several statistically significant components using a continuous wavelet 

transform function. After the significant low-frequency components of the time-series is identified, 

an autoregressive (AR) model is then employed to each of these components for stochastic simulation. 

Finally, the simulated time-series is obtained from the summation of each simulated component. 

The WARM application for the SFPUC study begins with decomposing the PC1 of annual 

precipitation into its low-frequency components. The wavelet decomposition process considers a 

series of orthogonal or independent series that carry low-frequency information within the data (i.e., 

persistence at inter-annual and multi-decadal time scales). Figure 25 displays the PC1 series of annual 

precipitation (at the top) and the identified low-frequency component at about 12-15 years (in the 

middle) along with the residual term (at the bottom). Next, the low-frequency component and residual 

term are simulated using a series of linear AR models. The model order (𝑝) and coefficients are 

determined using the “auto.arima (…)” function in the forecast package in R language (Hyndman and 

Khandakar 2008). After the AR models are defined, the time-series components are simulated using 

the “arima.sim (…)” function from the same R package. Note that the time-series models employed 

here (linear AR models) are additive in nature with no interactions across the noise or the signals. 

Based on this feature, we aggregate the simulated low-frequency component and the residual noise 

term to obtain a single simulated series of PC1.  

The warm process, i.e., the wavelet decomposition of PC1 of annual precip, the stochastic simulation 

of decomposed components, and finally aggregation of the simulated components, is repeated to 

obtain a set of (n = 1,000) stochastic realizations, each having 50-years of length. 
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Figure 25. Wavelet decomposition of the PC1 of annual precipitation (Original = PC1 of annual 
precipitation, Component 1 = detected low-frequency signal at about 12-15 years, Noise = the residual 
series from the PC1)   
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3.4. Disaggregation of Simulated PC1 Series in Time and Space 

The stochastic climate data generated in Section 3.2 provides new realizations of the PC1 of annual 

precipitation. However, for stress testing the water resources system, this data needs to be 

disaggregated into daily values of climate variables (i.e., precipitation, and minimum and maximum 

temperature) at different locations.      

The disaggregation of simulated PC1 of annual precipitation begins with inverting the vector of 50-

year simulated series to a matrix of multi-site data consisting of 50 years of annual precipitation values 

for each of the thirteen precipitation gage stations. This is done by multiplying the simulated PC1 

series by the station loading factors obtained from the PCA (Table 5), and then rescaling the station-

specific precipitation values based on the computed mean and standard deviations from each gage.   

Next, we disaggregate the multi-site annual precipitation data into monthly values using the “method 

of fragments” (Srikanthan and McMahon 2001; Silva and Portela 2012). The method of fragments is 

applied by obtaining the monthly precipitation ratios from the historical record and then standardizing 

the observed monthly rainfall time-series so that the sum of the monthly rainfalls in any given year 

equals unity. This results in 55 sets of fragments of monthly rainfalls from a record of 55-year data. 

For each year in the simulated multi-site annual precipitation data, we then identify the most similar 

year regarding mean annual precipitation and distribute the simulated annual precipitation value to 

monthly values using the twelve-monthly fragments from this most similar year. This procedure is 

repeated for all years of the simulated annual precipitation realizations.  

In the third and the final step, we further disaggregate the simulated monthly precipitation to daily 

values for all weather variables, i.e., precipitation and minimum, average and maximum temperature. 

This procedure is done using a non-parametric k-nearest neighbors (knn) resampling algorithm (Lall 

and Sharma, 1996). Knn is applied by finding k number of historical nearest neighbors from the 

historical monthly precipitation record, and then resampling among those k neighbors. In this process, 

a discrete resampling kernel is introduced to place higher weights to the neighbors that are more 

similar to the simulated value (shown below). Once a historical month is sampled among the k 

neighbors, all daily values of climate variables (precipitation and minimum, average, and maximum 

temperatures) are taken from that sampled month. The knn resampling process preserves the 

covariance structure between the weather variables and across space since the values are directly 

sampled from the historical record.   



39 

 

Below are the algorithms used for the method of fragments and knn resampling: 

 

 

Method of fragments approach (adapted from Silva & Portela, 2012) 

1. Begin with an inverted series of each annual precipitation realization 𝑛 ∈ 𝑁 

2. For each gage 𝑖 ∈ 𝐼, determine which year 𝑘 in the observed record had the most similar 

annual precipitation to the simulated annual precipitation 𝑃𝑖,𝑘
𝑛  

3. Calculate the proportion of annual precipitation in each month for year 𝑘 to obtain 

twelve monthly factors 𝑓(𝑚)𝑖,𝑘
𝑛  , where 𝑚 is the calendar month from 1 to 12 

4. Use 𝑓(𝑚)𝑖,𝑘
𝑛 values from step 2 to distribute the simulated annual precipitation 𝑃𝑖,𝑘

𝑛  into 

monthly values 𝑓(𝑚)𝑖,𝑘
𝑛 ∗ 𝑃𝑖,𝑘

𝑛  

5. Repeat steps 1 to 4 for each year 𝑘 ∈  𝐾 and gage 𝑖 ∈  𝐼 

6. Repeat step 5 for each all annual precipitation realizations 𝑛 ∈  𝑁 

KNN resampling algorithm (adapted from Lall and Sharma, 1996)  

1. Begin with a simulated monthly precipitation series obtained from the method of 

fragments. For each month 𝑚, a vector of simulated precipitation values 𝑃𝑠 of length 

thirteen (the number of gage stations) is available. 

2. Calculate the Euclidean distance𝑠 𝑑, between 𝑃𝑠 and each of the Q vectors of observed 

monthly precipitation for the same calendar month.  

3. Order the computed Euclidean distances 𝑑 from the smallest to the largest and select 𝑘 

smallest distances, 𝑑𝑗 where j is the index of the ordered distances {1,2, . . 𝑘}. The value 

of 𝑘 is set based on the square root of the sample size (in this case set as 7) 

4. Assign weights to each 𝑑𝑗 using the discrete kernel function:  

         𝑤𝑗 =

1
𝑗

∑
1
𝑗

𝑘
𝑗=1

 

where the weights assigned to k nearest neighbors 𝑤𝑗 sum to 1.  

5. Sample one value from the k-nearest neighbors, using the weights 𝑤𝑗 as the vector 

probabilities assigned to each nearest neighbor, and record the historical month 

associated with that value.  

6. Obtain the daily values of all climate variables, i.e., precipitation and minimum, average, 

and maximum temperature from the sampled historical month.    

7. Repeat steps from 1 to 6 for all months  

8. Repeat step 7 for each annual precipitation realizations 
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3.5. Weather generator performance 

In this section, we evaluate the performance of the weather generator based on its skill in replicating 

the statistics of the historical climate period (1956-2011).       

Figure 26 presents the power spectra from 1,000 stochastic annual precipitation realizations. The mean 

power signal from the stochastic series (black line) matches well to the power spectra of the historical 

annual precipitation (blue line) with a bump at the period length of 11-14 years. Results also show that 

the observed spectra are within the range of the simulated spectra (marked by the gray band) for the 

period lengths of up to 30 years.   

 

Figure 26. Global power spectra for annual precipitation. The observed spectra (blue) are compared 
against the mean power spectra (black) of the 1,000 simulations, along with range bounded by the 
2.5th and 97.5th percentiles of the power spectra for the ensemble (gray). Also shown is the 95% 
significance level (red dotted). The power spectra of the observations and simulations become 
statistically significant if they rise above the red dotted line. 
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Figure 27 compares annual mean precipitation from 1,000 stochastic realizations to the observed 

values (1956-2011 period) for each gage station across the Upcountry, Peninsula, and East Bay regions. 

Overall, there is good agreement between the simulated and observed annual precipitation, and the 

historical means are within the simulated range, except for the SUNO station in East Bay.   

 

Figure 27. Boxplots of simulated annual average precipitation across the gage stations in the three 
regions (Upcountry = blue, Peninsula = orange, East Bay = pink). The black dots represent the 
observed annual precipitation for each gage station.  
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Figure 28 compares average daily precipitation from the stochastic realizations to the average daily 

historical values for each calendar month. Results from the stochastic realizations vary over the wet 

season. Historical daily precipitation is well represented from January to March, underestimated in 

November, and overestimated in December.  
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Figure 28. Box-plots of mean monthly precipitation from the stochastic realizations. Historical 
monthly mean precipitation is shown by the blue dot. Results show spatially-averaged values across 
the thirteen gage stations.    

 

 

Figure 29 compares average daily 𝑇𝑚𝑖𝑛 values from the stochastic realizations to the observed 𝑇𝑚𝑖𝑛 for 

each calendar month. Results show that the observed values are within the range of the simulated 

𝑇𝑚𝑖𝑛 values, however, the match between the two dataset varies based on the month. A similar 

comparison is also shown for the daily 𝑇𝑚𝑎𝑥 values with comparable results (Figure 30).  
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Figure 29. Box-plots of mean monthly precipitation from the stochastic realizations. Historical 
monthly mean precipitation is shown by the blue dot. Results show spatially-averaged values across 
the thirteen gage stations.    
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Figure 30. Box-plots of mean monthly precipitation from the stochastic realizations. Historical 
monthly mean precipitation is shown by the blue dot. Results show spatially-averaged values across 
the thirteen gage stations.    

 

Next, we examine the first and higher-order statistics for all simulated daily weather variables across 

all stations (i.e., precipitation, minimum temperature, and maximum temperature) from the same 1,000 

stochastic realizations.  

Figure 31 depicts the mean, standard deviation, skew, and kurtosis of nonzero daily precipitation 

amounts. For this evaluation, we find the median values over the 1,000 stochastic realizations and 

compared them to the statistics of the underlying historical analysis period. The results suggest very 



47 

 

good performance regarding the mean of precipitation. The standard deviation of precipitation is 

slightly underestimated. The skewness and kurtosis of simulated precipitation matches well with the 

historical values, except for a few outlier values.    

Figure 32 shows the mean, standard deviation, skew, and kurtosis of daily minimum temperatures 

computed from the median results of 1000 stochastic realizations. Daily means and standard 

deviations show good performance with no noticeable bias. For both skew and kurtosis parameters, 

performance varies across different grid cells and months. However, we did not identify any systematic 

bias (i.e., under or overestimation).  

Figure 33 displays the mean, standard deviation, skew, and kurtosis of daily maximum temperatures 

computed from the median results of 1000 stochastic realizations. Daily means of maximum 

temperature matches very well with the historical values. However, the match between the historical 

and simulated standard deviation varies across different grid cells and months and overall shows a 

slight negative bias. The match between the simulated and observed maximum temperature is 

acceptable for the skewness, and poor for the kurtosis.  
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Figure 31. Daily performance statistics for precipitation for all possible combinations of gage stations 
(13 in total) and months, including the mean, standard deviation, skewness, and kurtosis. Median 
values across 1000 stochastic realizations are shown against the observed values. Observed values 
show daily values from the historical period 1956-2011. In each plot, the diagonal lines (slope=1 and 
intercept=0) is shown in blue color.     
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Figure 32. Daily performance statistics for minimum temperature for all combinations of grid cells 
(260 in total) and months, including the mean, standard deviation, skewness, and kurtosis. Median 
values across 1000 stochastic realizations are shown against the observed values. Observed values 
show daily values from the historical period 1956-2011. In each plot, the diagonal lines (slope=1 and 
intercept=0) is shown in blue color. 
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Figure 33. Daily performance statistics for minimum temperature for all combinations of grid cells 
(260 in total) and months, including the mean, standard deviation, skewness, and kurtosis. Median 
values across 1000 stochastic realizations are shown against the observed values. Observed values 
show daily values from the historical period 1956-2011. In each plot, the diagonal lines (slope=1 and 
intercept=0) is shown in blue color. 

 



51 

 

4. Analysis and Selection of Climate Realizations  

The weather generation process, which consists of a wavelet autoregressive model coupled with spatial 

and temporal disaggregation methods provide multi-site, multi-variable daily climate realizations for 

the SFPUC region. The set of stochastic climate realizations obtained from the weather generator 

(1,000 in total) can be combined with climate change factors (see section 5) for stress testing the 

system under uncertainty from natural variability and climate change. In this work, this is done through 

a cascade of models including the SAC-SMA and PRMS hydrological models, which take climate as 

input and the water resources system operations model, which takes the outputs of the hydrology 

models as inputs. Application of the stress test procedure over a large sample of climate realizations 

(in this case 1,000) is time-consuming and computationally demanding. To address this issue, we select 

a smaller set of climate realizations from the initial database of climate realizations that can span the 

entire variability range.  

In this section, we first show an analysis of climate realizations regarding drought severity and extreme 

precipitation to better understand the dataset. Next, we provide a methodology to select a smaller 

subset of “representative” and “interesting” realizations from the weather generator outputs. 

4.1. Analysis of Climate Realizations based on Drought Severity  

Given that droughts present an important challenge to the water utility’s ability to meet water demand, 

drought severity measures can be used to evaluate and rank the set of climate realizations from the 

weather generator. We measure drought severity using the sequent peak algorithm, a critical-period 

analysis technique commonly applied in water deficit analysis in reservoirs (Thomas and Burden 1963; 

Loucks et al. 2005). We applied sequent peak analysis to determine the maximum cumulative departure 

from mean precipitation in each daily precipitation realization and sort the traces based on the 

calculated range of cumulative deficits values. The maximum cumulative precipitation deficit for each 

climate realization is estimated using the equations: 

𝐾𝑡  = max{0,  𝐾𝑡−1  +   𝐷𝑡  −   𝑃𝑡}                                                                                                            

   𝐾∗  =  𝑚𝑎𝑥{ 𝐾𝑡 }  𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑡 = 1,2, … , 𝑡                                                                                                  
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where 𝐾𝑡 is the cumulative precipitation deficit at day 𝑡,  𝐷𝑡 is the mean annual precipitation at 𝑡,  𝑃𝑡 

is the precipitation at 𝑡, and 𝐾∗ is the maximum cumulative precipitation deficit over the entire 

simulation period. Thus,  𝐾∗ can be considered as a measure of drought severity, with higher values 

indicating prolonged periods of reduced rainfall.  

To assess drought severity, we calculated 𝐾∗ for each of the 1,000 climate realizations. In doing this, 

we focused on the Hetch Hetchy station due to its importance for the regional water resources system. 

Next, we rank the climate realizations in ascending order based on the computed 𝐾∗.  

Figure 34 shows a histogram of 𝐾∗ from 1000 realizations as well as the historical 𝐾∗ value from the 

1956-2011 period. 𝐾∗ values from the stochastic realizations span from about 0.1 to 4.9 inches, 

exceeding the historical 𝐾∗ value is 2.2 inches. This shows that the stochastic realizations provide a 

good coverage of possible range of drought severities (for the Hetch Hetchy gage station).  

 

Figure 34. Histogram of 𝑲∗ values from 1,000 stochastic realizations for the Hetch Hetchy gage 

station. The blue bar indicates the historical 𝑲∗ value at 2.2 inches. 

Figure 35 shows box-plots of 𝐾∗ values from the same climate realizations for all of precipitation gage 

stations. The results are compared against the historical 𝐾∗ for each station (shown in blue). Except 
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for the HML station in East Bay, the stochastic realizations are able to provide more severe droughts 

than the historical period. Figure 35 also shows that in about eight out of thirteen gage stations, the 

historical drought severity is represented within the first and the third quartile range of the 

stochastically climate data.  

 

Figure 35. Calculated daily maximum cumulative deficit values (𝑲∗) for the thirteen precipitation 

gages across the Upcountry, Peninsula, and East bay regions. The box-plots show 𝑲∗ values from the 

seven representative traces selected. The blue dots show the 𝑲∗ values calculated from the historical 
precipitation record (1956-2011) for each gage station. 
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4.2. Analysis of Climate Realizations based on Extreme Precipitation  

In addition to droughts, extreme precipitation events are also a major source of concern for public 

utility services, which is also the case for SFPUC.  We evaluate the same set of 1,000 climate 

realizations from the weather generator based on their ability to reproduce the observed precipitation 

extremes at the Hetch Hetchy gage station.  

For the extreme precipitation analysis, we first define a set of critical thresholds at the 98th, 99th, and 

99.9th percentiles of the historical monthly precipitation (1956-2011) (Table 6).  

Table 6. Extreme precipitation threshold level defined based on monthly precipitation at the Hetch 
Hetchy gage (1956-2011) 

 Percentile level Historical precipitation at the given level 

1 98 % 14.1 inches/month 

2 99 % 16.1 inches/month 

3 99.9 % 17.6 inches/month 

 

Figure 36 shows the frequency of extreme precipitation events shown in Table 6, for the historical 

monthly precipitation at the Hetch Hetchy gage (1956-2011). Over the historical analysis period, the 

threshold of 14.1 inches/month is exceeded 14 times (Figure 36-a), whereas the threshold of 16.1 

inches/month is exceeded seven times (Figure 36-b). There is only one precipitation event in the 

historical record that exceeded 17.6 inches/month (Figure 36-c). 

Next, we show the occurrences of extreme precipitation across the set of 1,000 stochastic climate 

realizations. Figure 37 shows the histograms of extreme precipitation in the stochastic realizations for 

the same monthly extreme precipitation thresholds levels, i.e., 14.1, 16.1, and 17.6 inches/month, 

respectively. For the threshold of 14.1 inches/month, the number of extremes events in each 

realization ranges from 2 to 21, compared to the historical value of 14 (Figure 37-a). For the threshold 

of 16.1 inches/month, number of extremes are up to 14, about twice as many as in the historical 

period (Figure 37-b). Finally, for the threshold of 17.6 inches/month, number of extremes are up to 

8 compared to one event in the historical record (Figure 37-c).  
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Figure 36. Time-series and exceedance probabilities for the Historical monthly precipitation at Hetch 
Hetchy gage (1956-2011). The horizontal dashed lines indicate the threshold values to set extreme 
events. Extreme values in a, b, and c are shown with blue dots.  



56 

 

 

Figure 37. Histogram of extreme precipitation events across the set of stochastic realizations obtained 
from the weather generator. In a, b, and c, the bins show the count of monthly extreme precipitation 
events exceeding the given threshold value (x-axis) and the corresponding number of realizations 
associated with each bin. The blue bar represents the count of extremes in the historical record.    
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4.3. Subsetting Climate Realizations for the Stress Test  

For the stress test analysis, we select a total of nine stochastic climate realizations among a set of 1,000 

provided by the weather generator. During the selection process, we aim to cover a broad and a 

balanced range of possible climate climates that may occur in the future. This includes three 

representative or “normal” realizations that are similar to the historical record and a total of six 

realizations that represent realistic but extremely wet and dry futures (Figure 38).   

 

Figure 38. The process of subsetting stochastic climate realizations for the vulnerability analysis  

 

4.3.1. Selection of representative climate realizations 

For identifying realizations similar to the historical precipitation sequence, we first evaluate the first 

and higher-order statistics of the 1,000 stochastic realizations, including monthly means, monthly 

standard deviations, and maximum monthly precipitation as well as the daily maximum cumulative 

deficit of precipitation estimated using the sequent peak algorithm introduced previously. After this 

comparison, we identify three realizations that best represent the historical precipitation data at the 

Hetch Hetchy gage.  

Figure 39 shows the boxplots of computed statistics from 1,000 daily stochastic traces in comparison 

to the historical values (red dots). The three selected realizations subsetted among 1,000 are shown by 

the blue dots. Monthly means of the selected realizations range from 3.02 to 3.05 inches, which shows 

a very good match to the historical value (3.025 inches). Standard deviation of the same three 

realizations range from 3.55 to 3.65 inches per month, which also matches very close to the historical 
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value (3.6 inches). Selected stochastic traces are also similar to the historical trace in terms of monthly 

maximums, which range from 18 to 19 inches (historical = 18.5 inches), and maximum daily 

cumulative deficit, which is estimated to be same as the historical value (2.2 inches) 

 

Figure 39. Box-plots of monthly mean, standard deviation, maximum precipitation, and daily 
maximum cumulative deficit of precipitation from 1,000 stochastic realizations (for Hetch Hetchy 
gage). Red dots indicate the historical statistics. Blue dots show the statistics of three selected 
stochastic realizations that show similar to the historical precipitation series.    

Figure 40 displays the annual precipitation time-series at Hetch Hetchy gage for the three selected 

stochastic realizations in comparison to historical series. Figure 41 shows that these three traces also 

preserve the spatial correlations between the Hetch Hetchy, San Andreas, and Calaveras stations.  
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Figure 40 – Annual precipitation series from three selected climate realizations (in green) compared 
to the historical series from 1956 to 2005 (in gray). All values are for the Hetch Hetchy gage station.  



60 

 

 

Figure 41. Three subsetted representative stochastic realizations from the weather generator results. 
For each realization, time-series at the Hetch Hetchy, Calaveras, and San Andreas stations shown by 
the indicated color.  
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4.3.2. Selection of extremely wet and dry climate realizations 

In addition to the three representative natural variability realizations, we also sample a total of six 

extreme realizations that can challenging for the water resources system, i.e., in terms of droughts or 

floods. To define the extremee climate realizations, we first define extremely dry and wet events based 

on an analysis of historical annual precipitation series from the Hetch Hetchy gage (from the year 

1956 to 2011). We define the dry and wet extremes based on the 95th and 95th percentiles of the 

empirical distribution of historical precipitation. These threshold values correspond to less than 18.3 

inches/year and greater than 60 inches/year for the dry and wet extremes respectively.  

Based on the specified wet and dry extreme thresholds, we then rank the set of 1,000 stochastic climate 

realizations based on three features:  

i) Frequency of extremes, i.e., count of values below (or above) the threshold,  

ii) Maximum duration of extremes, i.e., longest sequence of consecutive extreme values, 

iii) Severity of extremes, i.e., maximum magnitude of extreme values  

Based on these three features, we identify a total of realization that represent three extremely dry and 

three extremely wet realizations of the historical climate.  

Figure 42 displays the three extremely wet realizations referred as Trace 4, 5, and six respectively. The 

first wet realization (Trace 4), has six extremely wet years, which is two times of the count of extremes 

in the historical record. The second wet realization (Trace 5) has a three-year wet event (at the years 

36, 37 and 38), which can be challenging scenario for water system operations, i.e., flood control. 

Finally, the third realization (Trace 6) has a single wet year with a total precipitation of about 87 

inches/year, which corresponds to a return-interval of about 200 years.  

Figure 43 presents three extremely dry realizations referred as Traces 7, 8, and nine respectively. Trace 

7 has six extremely dry years (< 18.3 inches/year), which is three times of the historical series. Trace 

8 has a 3-year prolonged drought at years 39, 40, 41. If one considers the low precipitation years before 

this sequence (years 37 and 38), the specified drought can be considered as a 5-year drought. Finally, 

Trace 9 has a single year extreme drought, in which the total precipitation is less than 5 inches/year. 

This rare drought corresponds to a return-interval of about 10,000 years.  
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Overall, these six extremely wet and dry traces provide a rich representation of stochastic (natural) 

variability of the climate in addition to the three representative traces previously shown.  
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Figure 42. Three extremely wet climate realization identified from the weather generator outputs. The 
stochastic traces are shown in blue. Historical climate (1956-2005 interval) is shown in gray color. The 
red dashed line marks the threshold of 60 inches/year 
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Figure 43 Three extremely dry climate realization identified from the weather generator outputs. The 
stochastic traces are shown in blue color. Historical climate (1956-2005 interval) is shown in gray color. 
The red dashed line marks the threshold of 18.3 inches/year 
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Finally, selected statistics of the nine natural variability realizations sampled from the weather 

generator outputs are summarized in Table 7. 

Table 7. Selected statistics of the precipitation series from the nine stochastic climate realizations 
selected from the weather generator outputs. Historical series show the same statistics from the 
observed precipitation record (1956-2011 period). Stochastic minimum and maximum represent the 
range of statistics computed from 1,000 stochastic realizations. All values are based on the results at 
the Hetch Hetchy station.  

 
Type of 
stochastic 
realization 

Monthly  
mean 
precip. 
(inches) 

Monthly 
Standard 
deviation of 
precip. 
(inches) 

Monthly 
maximum 
precip. 
(inches) 

Daily max. 
cumulative 
deficit of 
precip. 
(inches) 

Trace 1 

Representative 
(normal) 
 

3.04 3.63 19.10 2.20 

Trace 2 3.02 3.56 18.58 2.22 

Trace 3 3.00 3.64 18.48 2.24 

Trace 4 

Extremely  
wet 

3.05 3.67 18.10 0.61 

Trace 5 3.01 3.52 18.30 3.01 

Trace 6 3.04 3.46 17.68 2.13 

Trace 7 

Extremely  
Dry 

3.05 3.45 17.88 1.43 

Trace 8 3.00 3.45 18.47 2.89 

Trace 9 3.02 3.44 18.23 1.09 

Historical series 3.02 3.60 18.70 2.20 

Stochastic minimum 3.00 3.30 16.50 0.01 

Stochastic maximum 3.10 3.90 22.60 4.59 
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5. Climate Change Projections and Scenarios  

In this section, we evaluate most recent climate projections across the SFPUC RWS region based on 

the data from the Global Coupled Model Intercomparison Project phase 5 (CMIP5, Taylor et al. 2012). 

We then consider this information to evaluate the possible range of mean changes in long-term 

precipitation and temperature for perturbing the natural variability realizations presented in the 

previous section. The work presented here is a joint effort of the University of Massachusetts Amherst 

team and the National Center for Atmospheric Research (NCAR). The analysis is structured into three 

high-level parts: i) a brief description of temperature outlooks and ii) more in-depth analysis of the 

projections of precipitation, and iii) a summary of projected changes.  

5.1. Temperature Projections 

Figure 44 summarizes the GCM multi-model spatial projection of temperature change across the 

western half of the US (including the SFPUC region) at mid-century. Most changes are seen in areas 

with snow feedback (winter in high-latitudes and continental interiors) and high elevations (all 

seasons), while the smallest changes are expected over the oceans. The magnitude of this warming by 

mid-century (~2050) varies slightly between models: ~2 to 2.50 ºC in the Upland and 1.5 to 2 ºC close 

to the ocean in the lowland. The seasonal variations of this robust change are fairly small.  

 

Figure 44. The projected changes in cold season precipitation as the CMIP-5 multi-model average. 
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Figure 45 shows the changes to the monthly mean absolute temperature climatologies for the three 

30-year periods (1981-2010, 2011-2040, and 2041-2070) for a location in the Southern Sierra near 

Hetch Hetchy as represented in the bias-corrected BCSD dataset. The plot suggests a robust warming 

signal across all months of the year and an increase of warming as time progresses. January’s mean 

temperature for the 1981-2010, 2011-2040, and 2041-2070 was -3.3oC, -2.2oC, and -0.9oC respectively; 

while the July mean temperature for the same periods were, 15.5oC, 16.9oC, and 18.6oC respectively. 

Note, the larger the projected mean changes, the broader the model spread, likely related to the 

differences in elevation in the models. Key is that the changes are systematic across models, despite 

internal climate variability (in contrast to precipitation, see below). 

 

 

Figure 45. The projected changes in mean monthly temperature across a CMIP5 multi-model 
ensemble for the periods of 1981-2010 (gray), 2011-2040 (yellow) and 2041-2070 (red) as bias-corrected 
in the BCSD archive for more accurate absolute values.  
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On inter-annual time scales, the variability of temperature appears to be increasing slightly as time 

progresses, although the change is not significant. Looking at KNN-results conditioned on CMIP5 

models, Figure 46 indicates that the range across the models increases as the different models exhibit 

slight differences in the mean warming trajectory (due to different climate sensitivity as well as 

differences in regional dynamical changes). When examining the inter-quartile range, the distribution 

of annual mean temperatures in the CMIP5 models is slightly larger for future periods than for the 

evolving present day window, and the overall warming trend over the period 2041-70 is faster than 

over the “current’ 1981-2010 interval. 

 

 

Figure 46. The projected changes in mean annual temperature across a CMIP5 multi-model ensemble 
for the periods of 1981-2010 (gray), 2011-2040 (yellow) and 2041-2070 (red). Each year in the 30-year 
sequence is represented by the distribution across 70 GCM simulations that got bias-corrected 
through the BCSD method.  



69 

 

As discussed above, the changes seen in temperature are robust and showing a systematic warming 

across time in all consulted datasets. In the BCSD historic ensemble, the mean is 5.45oC, while the 

2011-2040 ensemble mean is 6.6oC, and the 2041 to 2070 ensemble mean is 8.2oC. Figure 3 offers 

insight into the evolving nature of these changes (note, the segments connect seamlessly if assembled 

in sequence).  

In summary, temperatures are clearly projected to increase across the SFPUC domain. The changes 

by the 2050s are expected to be around 2 to 2.5 oC, with the upland locations possibly slightly higher. 

Towards the end of the century, the changes could reach as much as 4 to 5oC under the assumption 

of an RCP-8.5. The seasonal distribution of these changes is to a first order uniform, though locally 

in the high Sierra where snow feedback can operate, larger values can be expected during the shoulder 

seasons and in winter. 

5.2. Precipitation Projections 

We analyzed the precipitation projections with an eye towards aspects that are both important for 

water resource management, and that might exhibit more systematic signals, although the observation 

of non-significant change including variability within a range experienced during the recent past, is 

also a useful result for the current climate change assessment. 

Figure 47 shows the monthly average climatologies derived in the bias-corrected BCSD archive for 

the three 30-year periods over the Southern Sierra region that includes Hetch Hetchy. Figure 48 shows 

the projected anomalies relative to the present-day baseline for the direct GCM output. While 

individual months don’t necessarily appear highly robust in showing a change, when taken together 

across the seasonal cycle, a more systematic image appears: A clear seasonal evolution of the mean 

and median anomalies with relatively wet winters and much drier summers is seen. The two future 

periods show the GCM-derived projected changes in monthly precipitation suggesting increasing 

winter-time precipitation as reflected in the multi-model median as well as the inter-quartile range. 

The other period of increase is during summer, though the absolute values are diminishingly small. 

However, these two periods are separated by shoulder seasons that show a clear tendency for drying, 

namely between April, May, and June, as well as September, October and November.  
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Figure 47. The projected changes monthly mean precipitation across the year in the CMIP5 multi-model 

distribution as represented in the BCSD archive for the high elevation location of the Southern Sierra. 

 

Figure 48. GCM projected changes in mm/month (left panel) and percent changes (right panel) 
compared to the present-day baseline. Clearly seen are the increases during the core winter and 
summer season and decreases in the shoulder season. The large percent change in summer is an 
artifact of the very small absolute values of precipitation 
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Figure 49 shows the inter-annual precipitation variability from the CMIP5 projections. The figure 

shows the interannual spread by the running average across the different GCMs that are fully 

overlapping. The demonstrated inter-annual variability in the SFPUC region can mask a possible signal 

from climate change as in other regions (Deser et al. 2012).  

 

Figure 49. Projection of annual mean precipitation for three 30-year climatological periods (1981-2010 
light gray, 2011-2040 tan, and 2041-2070 brown) for the upland location of the SFPUC domain. Each 
box represents 70 samples from the BCSD data archive. The running mean values across the 30-year 
intervals are shown as lines. 

Although the mean precipitation change over the broader Hetch Hetchy Watershed shows a slight 

increase, the coherence of this signal across models is much lower than in regions further to the north 

(and much further to the south). Therefore, it is important to ask the question if the changes are in 

any form significant. Figure 50 illustrates significance using the approach applied in the IPCC report 

(Stocker et al., 2013, building on Tebaldi et al., 2011), where color is applied only in areas where at 

least two thirds of the models agree on the sign of change (the upland section of the SFPUC domain 

falls just outside of that area), and when additionally requiring a statistically significant deviation from 
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the present day distribution using a 90% confidence, then only small areas inland and off the coast of 

Oregon fulfill these criteria along the West coast of North America (hatched areas in Figure 50). 

 

Figure 50. Projection of change in winter (DJF) precipitation for 2050 over the North American West. 
Colored areas indicate at least two-thirds of models agree on the sign, and hatched areas additionally 
fulfill significance criteria at the 90% confidence level. 

Figure 50 broadly outlines the dynamical feature of expected changes in the hydrologic cycle. Higher 

latitudes will very likely see an increase in precipitation due to an increase in transport of moisture in 

warmer air. The subtropical areas are more likely to see a decrease in precipitation due to enhanced 

downward motion in the descending branch of the Hadley cell. Based on the different climate model’s 

depiction of this constellation, the intersect between these two large-scale domains falls somewhere 

over Southern and Central California. The SFPUC domain is near the positive precipitation domain 
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(the Bay is actually within it), and thus can be considered to be somewhat more likely to see positive 

than negative precipitation in the near future. This outlook appears consistent with the changes 

discussed above regarding the seasonal cycle. Positive trends during winter (Dec - February) align with 

the more robust trends to the north of the SFPUC domain. But because of the high variability, the 

significance of these changes in the means remains low.  

When considering only the maximum precipitation events, however, then a trend towards higher 

values is apparent. Figure 51 illustrates the BCSD-derived maximum monthly precipitation for each 

year annual precipitation for the Southern Sierra with an increase over the coming decades in both the 

expected value (median and mean maxima) as well as an increase in spread reflecting the heavy tail of 

the distribution of these maxima. 

 

Figure 51. Projection of change in annual maximum precipitation (in mm/day) for the Southern Sierra 
showing an increase from 12 to 14 mm. 

5.3. Summary of Projected Changes 

In this section, we aimed to identify systematic changes that can be linked to underlying physical 

processes to strengthen the confidence in the projections. While temperature changes appear highly 
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robust across all time scales, changes in precipitation are less certain and require separation into 

different components. Long-term mean precipitation appears not statistically significant; we 

nevertheless consider it more likely that the average might increase than a decrease. However, the 

interannual variability is also likely to increase, supporting the notion that in a warmer world the 

enhanced hydrologic cycle shows wetter conditions when wet and drier conditions when dry. Most 

importantly, high-intensity precipitation events are likely to increase in frequency and intensity. 

Table 8. Overview of identified changes. 2010-2040 and 2025 mean, and 2041-2070 and 2050 mean. 

Climate Variable GCMs BCSD WRF-CONUS 

Temperature - annual 2025: 
Upland: 
Lowland: 
 
2050: 
Upland: +2 - +2.5 
Lowland: +1.5 - 2 

2025: 
Upland: +1 
 
 
2050: 
Upland: 2-3 

2085: 
Upland: +4 - +5 
Lowland: +3.5 - + 4 

Temperature - seasonal 
mean 

 Seasonal cycle   

Precipitation - annual non-significant non-significant  

Precipitation - seasonal 
mean 

DJF: positive, +10% Jan 
MAM: negative, -10% Apr 
JJA: positive, miniscule 
SON: negative, -10% Nov 

Similar: 
DJF: positive, +10% Jan 
MAM: negative, -10% Apr 
JJA: positive, miniscule 
SON: negative, -10% Nov 

DJF: +10% upland 

Dry days / Wet days MAM: increase in dry days, 
and potential decrease in 4-
day (longer) events. 

  

Maximum Monthly 
precip 

 Increase ~10% from 12 to 
14 mm/day 

 

Extremes Increase across tails   

Whiplash ~10% increase in transition 
intensity 

  

 

Figure 52 shows the scatter plot of annual mean climate changes from the CMIP5 ensemble for the 

2020-2070 period relative to the historical period of 1960-2010. The climate projections show a 

relative increase in temperature up to about 4°C for East Bay and Upcountry regions and about 3°C 
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for Peninsula. However, in all regions, projected temperature changes are clustered around 1-2 °C. 

Similar to other regions in the globe, model projections for precipitation change is highly uncertain 

across the three regions, with no clear direction. Projected range of changes in precipitation are -20 to 

30% in East Bay and Peninsula and -15% to 25% in Upcountry.  
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Figure 52 –Projected changes in mean annual precipitation and temperature from the CMIP5 climate 
models under Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0, and 8.5: a) East Bay, b) 
Peninsula, c) Upcountry. Each dot shows a calculated relative change in mean annual climate between 
the future period of 2020-2070 and the historical period of 1960-2010.  
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5.4. Development of Climate Scenarios 

The final set of climate scenarios are obtained by perturbing the selected set of nine stochastic climate 

realizations by a range of temperature and precipitation change factors. The purpose of this process 

is to obtain a wide range of scenarios that span the uncertainties from natural climate variability as 

well from long-term anthropogenic climate change.   

Based on the analysis shown in Section 5.3, we vary the annual mean temperature from 0 to 5° C with 

1° C increments. For precipitation, we explored a range of changes from -40% to 40% with 5% 

increments. Overall, this results in a vector of 102 climate changes from each unique combination of 

6 temperature changes and 17 precipitation changes. These change factors are then applied over each 

of the nine stochastic realizations of 50-year length transiently, resulting in a total of 918 climate 

scenarios (Table 9).   

Table 9. Summary of climate change scenarios  

Type of uncertainty Sampling range Sample size 

Natural climate 
Variability 

stochastic realizations of the 
historical climate 

9 realizations 

Changes in mean 
annual precipitation (%) 

-40 % to 40 % with 5% 
increments 

17 change factors 

Changes in mean 
annual temperature (°C) 

0 to 5° C with 1° C  
increments 

6 change factors 

 TOTAL 918 climate scenarios 

 

The final set of annual precipitation series that result from the combinations of nine stochastic 

realizations and five levels of precipitation changes (i.e., linear changes of -40%, -20%, 0, 20% and 

20% from the baseline values) is displayed from Figure 53 to Figure 55. These time-series illustrate a 

wide range of challenging scenarios for the SFPUC water resources system with in terms of both wet 

and dry conditions as they consider natural climate variability and possible climate changes together. 
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Figure 53. Selected set of representative stochastic realizations from the weather generator outputs 
(Traces 1, 2, and 3 respectively). Each stochastic trace is linearly perturbed by five precipitation change 
factors (i.e., -40%, -20%, 0, and 40%) to impose long-term climate changes. 
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Figure 54. Selected set of wet stochastic realizations from the weather generator outputs (Traces 4, 5, 
and 6 respectively). Each stochastic trace is linearly perturbed by five precipitation change factors 
(i.e., -40%, -20%, 0, and 40%) to impose long-term climate changes. 
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Figure 55. Selected set of dry stochastic realizations from the weather generator outputs (Traces 7, 8, 
and 9 respectively). Each stochastic trace is linearly perturbed by five precipitation change factors 
(i.e., -40%, -20%, 0, and 40%) to impose long-term climate changes. 
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5.5. GCM Downscaling 

GCM projections are too coarse and biased to be used directly for a hydrologic impact assessment 

and need to be downscaled to a finer resolution before they can be used to drive hydrologic models 

[Fowler et al., 2007]. There are two components to downscaling: spatial downscaling and bias 

correction. Bias correction refers to an approach where known systematic errors (‘biases’) in GCM 

projections over a region are removed. There are two primary methods for spatial downscaling: 

dynamical and statistical. Dynamical downscaling approaches make use of regional climate models 

(tailored to the region of interest) and use GCM output as boundary conditions. While it can provide 

a much more realistic representation of the physical processes in a region, dynamical downscaling can 

be computationally prohibitive, especially for larger domains and for processing several GCM 

ensembles with over centuries-long climate time series. 

Statistical downscaling makes use of historically observed empirical relationships between finer-scale 

climate variables and coarser GCM output. Implicit in this approach is the assumption that the 

relationship between coarser scale climate and finer scale climate variables remains stationary. 

Constructed analogs (CA) has emerged as a popular statistical downscaling method, especially for 

North America [Brekke et al., 2013]. CA methods search for a set of observed days (typically 30) that 

most closely match a given GCM output day when the observations are coarsened to the GCM grid. 

Bias-corrected constructed analog (BCCA) and Localized Constructed Analog (LOCA) [Pierce et al., 

2015] are two commonly used sets of downscaled GCM data products that make use of the CA 

method [Bracken, 2016].  

There are three key differences between the LOCA and BCCA approaches. BCCA selects a set of 30 

analog days where climate most closely matches a given GCM grid cell daily climate across the entire 

downscaling domain. LOCA selects the set of 30 analog days based on how well the observed days 

match the GCM climate over ~1000 km region around the point being spatially downscaled. The 

second key difference is that while the BCCA approach calculates optimal weights for the selected 30 

days to generate downscaled climate, LOCA selects only one of the 30 days that is most similar to the 

point being downscaled at a ~100 km scale. This has important implications as the LOCA approach 

thus avoids the problem of spurious precipitation drizzle generation and damping of precipitation 

extremes that result from using a weighted average of 30 days (as is done for BCCA). The third key 

difference between the LOCA and BCCA data products is in the bias correction method. BCCA uses 
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quantile mapping for bias correction that can lead to a loss of the GCM predicted climate change 

signal depending on the climate variability of the given region. LOCA avoids this problem by making 

use of a three-step process that preserved the climate signal. 

Given the internal climate variability observed in California’s climate, and the spatial climate variability 

across our study area, the choice of GCM downscaling approach used to evaluate hydrologic impacts 

of climate change may influence findings. In this study, we compare BCCA and LOCA downscaled 

climate data and its projected effect on SFPUC watersheds. We also compare the downscaled GCM 

projections with climate simulation produced using a stochastic weather generator. We obtain 

downscaled GCM ensembles for both the BCCA and LOCA approaches [Maurer et al., 2007]; retaining 

only the 10 models that have been identified by the Climate Change Technical Advisory Group 

(CCTAG) [CA DWR, 2015b] to simulate California climatology well. The models selected for this 

analysis are all from RCP 8.5 emission scenario. For BCCA, we were only able to obtain 7 of the 10 

models for the RCP 8.5 emission scenario. 

Figure 56 shows a comparison of changes in the magnitude, frequency and variability for simulated 

precipitation at the Hetch Hetchy gage using different downscaling approaches. 100 weather generator 

runs, each 50 years long, run under baseline conditions (no climate change) are shown. The ensemble 

of GCM projections of 2020-2070 included in the study for this region indicate an increase in both 

the mean and standard deviation of annual precipitation over the historic average (black circle). A 

slight decrease in coefficient of variation is also observed. The lag-1 autocorrelation (not shown) values 

exhibited by the projections are similar to the low value of observed autocorrelation (0.03) for 

precipitation at this gage station. No systematic difference can be observed in the precipitation 

projections from the BCCA and LOCA downscaling. The weather generator runs exhibit climate 

characteristics comparable to the observed record and present a range of plausible climates that can 

be run to evaluate the effect of internal climate variability on regional hydrology. The weather 

generator is used in this study to explore a much wider range of future climate than those offered by 

the GCMs. 

 



83 

 

 

Figure 56. The mean and coefficient of variation of annual precipitation at the Hetch Hetchy 
precipitation gage. Statistics for observed (black), simulated (blue), and GCM projected (red) 
precipitation are shown. Shapes denote the different downscaling method used. 
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6. Climate realizations: CliWxGen vs. NCAR-WG  

The section provides a summary of the task of comparing synthetic sequences of daily climate 

generated by NCAR-WG and CliWxGen. Although both NCAR and CliWxGen generators produced 

new sequences of daily precipitation and daily maximum and minimum temperature across the 

Upcountry region, the comparison described in this section focuses on the precipitation variable only. 

The comparison is carried out using simulated precipitation at nine stations spread over the Upcountry 

region. Precipitation time series at these nine locations are required inputs to PRMS, the hydrology 

model used for the LTVA to simulate streamflow across the region (see the Technical Report 2: 

Hydrology Modeling Module; HGR TR2, 2021). The nine considered precipitation stations are Hetch 

Hetchy Reservoir, Buck Meadows, Tuolumn Meadows, Cherry Valley Dam, Moccasin, Pinecrest, 

Yosemite, Gianlelli and Early Intake). Prior to comparing the NCAR and CliWxGen weather 

generator outputs, it is worth highlighting few differences between these two tools.  

As described in more details in the previous sections, CliWxGen is a stochastic weather generator that 

combines a wavelet autoregressive model with the method of fragment and the k-nearest neighbors 

(Knn) approach. As such, CliWxGen is only driven by the low frequency components that are 

identified from the historical observed rainfall. In this study, only one significant low frequency 

component was identified (≈15-year frequency, Section 2.4). CliWxGen simulated daily precipitation 

time series for only five out of the nine stations that are used in PRMS model. Precipitation time series 

at the four missing locations are obtained via interpolation fro m the five available stations; see the 

Technical Report 2 (HRD TR2, 2021) for more details regarding the interpolation). Nine 50-year long 

stochastic realizations of daily precipitation are used for the comparison. As a whole, these nine 

stochastic realizations built by CliWxGen are deemed consistent with the historical period used, which 

is the period 1956-2011. 

The NCAR weather generator is a non-parametric stochastic weather generator that combines a 

Markov Chain Model (MCM) with the Knn approach. MCM is used to create daily stochastic 

sequences of dry, wet and very wet days over arbitrary long sequences (in this case, 30-year long 

periods). Knn is used to randomly select a date from the historic record that satisfies the sequence 

state (dry-to-dry, dry-to-wet, dry-to-very wey, etc) that has been simulated with MCM. To account for 

seasonal effects, candidate days are sampled within a moving window that is centered on the current 

Julian day. For each selected dates, precipitation, maximum and minimum temperature are sampled at 
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once to keep consistency among the weather variables. For future periods, i) a similar temperature 

trend as observed in the GCM projections is added to the synthetically generated temperature time 

series; ii) the magnitude of extremes is corrected to account for the change in extreme precipitation 

between historic and future periods, as seen in the GCM projections. Four different GCMs are used 

to condition the NCAR weather generator (CCSM, CESM, GFDL, MPI). Up to 30 stochastic 

realizations were generated for each GCM-forcing. The dataset used to build NCAR weather generator 

is the dataset that SPUC uses as input data to their PRMS models for Upcountry. This dataset spans 

from 1969 to 2015. More details regarding the NCAR weather generator are given in the Technical 

Report: Climate Change Storylines (NCAR, 2018). 

Figure 57 shows the results of the comparison of the simulated annual precipitation obtained from 

the NCAR weather generator (boxplot) and CliWxGen (colored symbols). Although the comparison 

is meant to be carried out under current climate conditions, simulated future periods are shown for 

NCAR-WG. As compared to the historical mean of the Upcountry annual precipitation (i.e., roughly 

950 mm; 37.4 in), all nine CliWxGen realizations well reproduced the historical average. The historic 

realization (brown square symbol) is from five available gauges for which available rainfall data covers 

the period used by CliWxGen (i.e., 1956-2011) plus precipitation at the missing four gauges were 

obtained via interpolation (HGR TR2, 2021). The black square shows the annual average from historic 

observed ground stations that are used in PRMS. Each NCAR-WG produces a range of mean statistics 

that varies from 1981-2010 through 2041-2070. It is observed CCSM, CESM, and GFDL-informed 

realizations’ mean decreases from 1981-2010 to 2011-2040 before increasing for 2041-2070. Historical 

(1981-2010) CCSM, CESM, GFDL, and MPI-informed realizations centered closely on the historical 

mean (based on the median) and captures the range of the nine stochastic climate realizations. 

However, CESM tends to produce lower annual total precipitation than the historical (one realization 

of CESM goes as low as about 800 mm).  
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Figure 57. Comparison of the simulated annual average precipitation across the Upcountry region 
(average of 9 stations). Results from the NCAR-WG are shown using boxplots. Each color shows a different 
GCM used to conditions the NCAR-WG. Each boxplot summarizes the distribution across the 30 stochastic 
realizations. Results are shown for the baseline period (1981-2010, labeled ’1980’) and two futures periods 
(2011-2040 and 2041-2070, respectively labeled ‘2010’ and ‘2040’). Results obtained from each stochastic 
realization (9 total) simulated via CliWxGen are shown with colored square symbols. CliWxGen realizations 
are meant to represent the 1956-2011 period (to ease the reading, results are repeated for each period). Note 
that a random noise was added to the x-axis of the square to ease reading of the figure. The historical realization 
is shown in brown color and the black squares show the annual average calculated using PRMS inputs (1970-
2016). In the context of this comparison, the latter is considered being the ‘truth’, although the time periods 
used by each model vary. 

Figure 58 illustrates the comparison results between NCAR-WG and CliWxGen in regards with 

variability of the precipitation variable. Variability at both annual and monthly scales is analyzed. 

Results show that simulations from NCAR-WG tend to overestimate the variability of the annual 

precipitation. It is noted for instance that the variability of the historical annual precipitation (black 

squares in Figure 58, left) is below the lower inter-quartile of the annual precipitation distribution 

across the ensemble of 30 realizations for each forcing GCM. The nine stochastic realizations from 

CliWxGen are closer to the historical value. Some slightly overestimate while some slightly 

underestimate the inter-annual variability of the historical precipitation. As an ensemble, the nine 

stochastic realizations represent correctly the inter-annual variability of the annual historical 

precipitation across the Upcountry region. 
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The results of the comparison for the monthly temporal scale is significantly different than the one 

discussed for the annual scale. It is noted that simulations from NCAR-WG significantly overestimate 

the variability of the monthly precipitation across the region. On the other hand, the stochastic 

realizations from CliWxGen underestimate the precipitation variability at monthly scale. Note that the 

historical realization (brown) is close to the historic precipitation. A similar results is obtained on a 

daily temporal scale, although not shown in this report. More details regarding the comparison are 

given in the Technical Report 2 (HRG TR2, 2021). 

 

Figure 58. Comparison of the standard deviation of the simulated precipitation across the Upcountry 
region (average of 9 stations). Left: annual temporal scale. Right: monthly temporal scale. See  

Figure 57 for more caption details. 
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APPENDIX I – Historical Statistics of Weather Variables in the Study Region  

Annual precipitation (inches)   

Station name Region Mean  
Coefficient of 
Variation  

Minimum Maximum 

Alameda East Portal East Bay 19.40 0.37 0.00 33.83 

Buck Meadows Upcountry 34.57 0.38 11.57 67.67 

Calaveras East Bay 20.06 0.34 0.00 46.56 

Cherry Valley Upcountry 46.49 0.36 0.25 94.70 

Davis Tunnel Peninsula 36.91 0.40 2.20 67.88 

Half Moon Bay Peninsula 24.26 0.38 2.43 53.57 

Mt Hamilton East Bay 23.86 0.38 6.56 46.44 

Hetch Hetchy Upcountry 35.70 0.31 12.60 75.62 

Early Intake Upcountry 33.24 0.32 9.14 67.73 

Lower Crystal Springs Peninsula 25.35 0.35 0.13 51.43 

Livermore Airport East Bay 14.08 0.35 4.56 32.37 

Moccasin Upcountry 27.95 0.32 8.50 52.19 

Moffett Federal Airfield South Bay 12.85 0.36 3.08 31.40 

Newark East Bay 13.73 0.63 3.36 76.04 

North San Andreas Peninsula 29.75 0.38 5.77 59.90 

Pilarcitos Peninsula 37.19 0.35 0.00 65.45 

Rose Peak East Bay 20.94 0.32 5.65 32.93 

San Andreas Res Peninsula 31.91 0.33 6.86 61.38 

San Antonio R East Bay 17.87 0.35 4.81 40.31 

Sawyer Camp Peninsula 33.04 0.41 6.60 64.80 

San Francisco Int. Airport Peninsula 19.23 0.36 3.38 38.34 

San Jose East Bay 11.68 0.32 2.71 17.15 

Sonora Upcountry 31.20 0.37 5.26 62.04 

Sunol East Bay 19.29 0.33 0.05 45.01 

Tuolumne Meadows Upcountry 25.05 0.35 7.51 53.88 

Upper Crystal Springs Peninsula 26.24 0.35 0.00 52.70 

Yosemite Upcountry 35.73 0.35 9.46 66.28 
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Annual temperature (°F) 

Station name Region Mean  
Coefficient of 
Variation 

Minimum  Maximum  

Buck Meadows Upcountry 55.88 0.08 44.78 63.87 

Burlingame Peninsula 57.17 0.04 52.27 68.35 

Cherry Valley Upcountry 52.87 0.05 39.36 57.66 

Half Moon Bay Peninsula 54.79 0.02 52.21 57.78 

Mt Hamilton East Bay 54.53 0.04 43.46 58.45 

Horse Meadows Upcountry 36.12 0.12 23.18 40.06 

Hetch Hetchy Upcountry 53.71 0.04 41.41 59.11 

Early Intake Upcountry 57.37 0.04 46.58 63.56 

Livermore Airport East Bay 59.22 0.03 53.71 63.73 

Moccasin Upcountry 60.56 0.04 49.10 65.23 

Moffett Federal Airfield South Bay 59.30 0.03 54.15 64.00 

Newark East Bay 58.80 0.03 53.16 62.26 

Paradise Meadow Upcountry 36.78 0.11 26.03 43.72 

San Francisco Int. Airport Peninsula 57.36 0.03 54.19 62.28 

San Jose East Bay 60.29 0.03 54.60 62.38 

Slide Canyon Upcountry 35.44 0.13 21.29 39.66 

Tuolumne Meadows Upcountry 37.28 0.09 23.87 39.78 
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APPENDIX II – Historical Trends in Average Monthly Temperature  
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APPENDIX III – Historical Trends in Monthly Precipitation (Selected Gages) 

 



100 

 

 



101 

 



102 

 

 



103 

 

 



104 

 

 



105 

 

 



106 

 

 



107 

 

 



108 

 

 



109 

 



110 

 

 



111 

 

 


