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Summary 

San Francisco Public Utilities Commission is interested in understanding the vulnerability of their 

system to climate change. The Hydrosystems Group at the University of Massachusetts is currently 

engaged in a Long Term Vulnerability Assessment to help SFPUC understand which future 

conditions cause the system to fail in meeting its level of service goals. A significant driver of 

operations for SFPUC is water demand. This report outlines analysis undertaken to develop 

scenarios of long-term urban water demand forecasts at the daily timestep. The results of this 

analysis, in combination with hydrological stream flow time series, will provide direct inputs for 

a stress test that will be conducted on an infrastructure system model of the SFPUC water system.  

We conduct uncertainty and sensitivity analysis to establish a plausible range of demand scenarios 

to be used in the stress test of the regional water system. We apply quasi random sampling to 

independent variables to develop many thousands of realizations of future demand from 2010-

2070. We use the results of this analysis to explore the sensitivity of the model to each of the input 

variables through linear regression and global sensitivity analysis. Finally, we employ the Patient 

Rule Induction Method (PRIM) to understand which conditions lead to very high values of 

demand.  

Informed by the uncertainty and sensitivity analysis, we establish annual scenarios of total demand 

for all customers based on the projection provided by Brattle (2018). SFPUC’s share of total 

demand is established using observed values from FY2012-13. Lastly, annual demand values are 

downscaled to daily timestep using temperature timeseries to reflect seasonal fluctuations in 

demand.  
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1. Introduction 

Context and Purpose 

San Francisco Public Utilities Corporation (SFPUC) and the Hydrosystems group at the University 

of Massachusetts Amherst are currently engaged in a long-term vulnerability assessment to 

understand what the impact of climate change, in combination with other factors, will be on the 

SFPUC Hetch Hetchy Regional Water System (RWS) over the next 50 years. In a workshop 

conducted at the outset of the project, key decision makers within SFPUC were asked to identify 

key sources of vulnerability that they consider could put the organization at risk of not achieving 

its level of service goals and rank them in terms of importance and degree of uncertainty (Figure 

1-1). Water demand was identified as a source of vulnerability, a central driver of water system 

operations and a key uncertainty affecting future performance of the system.  

 

The modeling framework used for the Long-Term Vulnerability Assessment (LTVA) is 

presented in Figure 1-2. The purpose of the demand module is to produce input time series of 

demand for the System Model (HRG TR4, 2021). The demand module converts plausible future 

annual demand scenarios to daily time series of demand of the wholesale customers, the in-City 

retail and some large suburban retail customers using temperature time series from the Weather 

Generator module HRG TR1 (2018).  

Figure 1-1: Importance and uncertainty associated with sources of vulnerability 

identified by SFPUC leadership . 
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Figure 1-2: Schematic of the framework for the Long-Term Vulnerability Assessment 

 

The purpose of this technical report is to document analyses conducted to develop scenarios and 

daily timeseries of water demand for use in the ongoing Long Term Vulnerability Assessment. 

Section One of this report provides a high level summary of the modelling approach and 

background on historical demand and existing projections in use by SFPUC. Section 2 describes 

baseline conditions used to initialize the model. Section 3 describes the uncertainty and sensitivity 

analysis conducted to establish the range of demand scenarios in 2070 whilst Section 4 describes 

these scenarios in relation to the Brattle (2018) projection. Section 5 documents the approach used 

to downscale annual demand to daily timeseries.  

1.1. Modeling Approach 

Currently, SFPUC water supply system planning model uses a single annual demand value 

disaggregated into three delivery centers with a fixed monthly pattern. The proposed demand 

module produces daily time series of demand for each customer. An illustration of the overall 

approach is provided in Figure 1-3. First, we explore the uncertainty of existing total demand 

projection model (section 3) to define scenarios of annual demand for the RWS (section 3.3) to be 

used in the LTVA stress test. The annual time series of demand for each customer are obtained 

starting with the baseline (section 2) and an adding and incremental amount a demand based on 

the work by the Brattle Group (Brattle, 2014, 18). We then establish the share of total demand that 

will fall to SFPUC based on the observed share of total demand from FY2012-2013. Lastly, we 

incorporate the influence of weather and climate through application of a heat function (section 5) 

and 9 synthetically generated sequences of temperature generated by the weather generator HRG 

TR1 (2018). These daily times series of demand for the RWS serve as input for the San Francisco 

Water System Model (SFWSM) (HRG TR4, 2021). 
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Figure 1-3: Schematic of demand module 

1.2. Retail and wholesale customers 

SFPUC provides water to both retail and wholesale customers. With the RWS, the SFPUC delivers 

water to 28 wholesale customers in Alameda, Santa Clara, and San Mateo Counties, including the 

Groveland Community Services District (Groveland CSD) in Tuolumne County ( 

Figure 1-5). Approximately two thirds of the 

SFPUC’s water supply is delivered to wholesale 

customers, and the remaining one third is 

delivered to retail customers. The Bay Area 

Water Supply and Conservation Agency 

(BAWSCA) represents the interests of 26 of the 

wholesale customers and also coordinates their 

water conservation programming. The SFPUC 

also provides retail water service to customers in 

San Francisco and a small number of customers 

outside of San Francisco that are located along 

the RWS transmission system.  

The SFPUC serves water for municipal and 

industrial users. As shown in Figure 1-4, 

residential demand (Single Family Residential 

(SFR) and Multi Family Residential (MFR)) 

makes up only about 50% of total demand. The 

other half of demand is made up of the 

commercial industrial sector and ‘government & other’.  

Figure 1-4: Breakdown of demand by sector in 

the SFPUC service area in 2010 (Brattle, 2018) 
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Figure 1-5: Map of SFPUC service area – the City of San Francisco and 28 wholesale 

customers (SFPUC, 2016). 

 

Historical water usage 

across the SFPUC service 

area from 1972 through 

2019 is presented in Figure 

1-6. The times series shows 

the effects of droughts of 

1976-77, 1987-92 and 

2013-17 on the water 

consumption. Water 

conservation in the service 

area explains the steady 

decline since the early 

2000s. The sharp decrease 

in water consumption from 

2014 onwards is explained 

by the drought response 

throughout the service area. 

The consumption on the 

RWS does not represent the 

demand of the SFPUC 

  

Figure 1-6: Historical water consumption on the RWS for the 

retail and wholesale customers from 1972 to 2019 (water 

usage data provided by SFPUC) 
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service area since several wholesale customers have other sources of supply. Since 1970, the 

SFPUC has supplied approximately 65% of total wholesale customers’ demand. The dependence 

of each Wholesale customer on the RWS varies, with some entirely reliant on the SFPUC for their 

supply (Figure 1-7).  

 

 
Figure 1-7: Wholesale customer demand and fraction of demand met by the RWS (share). 

The wholesale water contractual obligations are outlined in the 2009 Wholesale Water Supply 

(WSA) Agreement (SFPUC, 2009). The WSA describes the “Supply Assurance” of 184 mgd for 

24 of the 26 Wholesale Customers. The 184 mgd Supply Assurance is perpetual and survives the 

expiration of the WSA in 2034. The Supply Assurance includes the demands of the City of 

Hayward and 23 additional wholesale customers. The Supply Assurance is allocated between 23 

wholesale customers using allocations called “Individual Supply Guarantees” (ISGs). The ISGs 

represent each customer’s share of the Supply Assurance (Table 1-1). Separately, the City of 

Hayward has an unspecified supply allocation1, included as the difference between 184 mgd and 

the sum of the customers’ ISGs.  

Customers with an ISG are referred to as permanent customers. Santa Clara and San Jose are not 

permanent customers and do not have ISGs in place but instead have Interim Supply Allocations 

(ISAs). The wholesale customers’ collective allocation of 184 mgd includes the demands of the 

Cities of Hayward, San Jose, and Santa Clara.  

 
1 City of Hayward has an unspecified supply allocation due to the terms of a 1962 individual water supply contract 

with the SFPUC that did not contain a fixed allocation of water (SFPUC, 2016). 
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Table 1-1: breakdown of Individual Supply Guarantees (ISG) (share of Supply Assurance 

according to the 2009 WSA (SFPUC, 2009) for each wholesale customer 

Wholesale Customer ISG (mgd) RWS Demand 

FY2012-13 (mgd) 

Ratio between ISG 

and FY2013 demand 

Alameda County Water District 13.76 9.06 0.66 

Brisbane/GVMID 0.98 0.32 0.33 

Burlingame 5.23 4.16 0.80 

CWS - Bear Gulch 13.28 12.08 0.91 

CWS - Mid Peninsula 14.66 14.04 0.96 

CWS - South San Francisco 7.74 6.89 0.89 

Coastside County Water District 2.18 1.67 0.77 

Daly City 4.29 4.13 0.96 

East Palo Alto Water District 3.46 2.08 0.60 

Estero MID 5.90 4.05 0.69 

Hayward 22.08 15.48 0.70 

Hillsborough 4.09 3.25 0.79 

Menlo Park 4.46 3.24 0.73 

Mid-Peninsula 3.89 3.00 0.77 

Millbrae 3.15 2.28 0.72 

Milpitas 9.23 6.63 0.72 

Mountain View 12.46 9.09 0.73 

North Coast County Water District 3.84 2.51 0.65 

Palo Alto 16.58 11.33 0.68 

Purissima Hills Water District 1.63 1.99 1.23 

Redwood City 10.93 9.31 0.85 

San Bruno 3.25 2.01 0.62 

Santa Clara - 2.18 - 

San Jose - 4.50 - 

Stanford University 3.03 2.14 0.70 

City of Sunnyvale 12.58 9.54 0.76 

Westborough Water District 1.32 0.91 0.69 

Cordilleras MWC  0.01  

 

1.3. Existing Demand Projections 

The Brattle Group (2014, 2015, 2018) prepared for SFPUC econometric models that incorporate 

weather and socio-economic factors to project urban water demand in the SFPUC service area 

through 2040. A summary of these various projections is provided in Figure 1-8 and the model is 

described in detail in section 3.1.1. For their report, individual specific water demand models were 

developed for the City of San Francisco and the Wholesale Customers. The demand models are 

based on separate models for the single-family residential (SFR), multi-family residential (MFR), 

and commercial and industrial (CI) sectors. The models were developed using historical data for 

estimating the relevant parameters. The initial conditions for the model represent normalized 

annual demand to remove the effects of unusual weather and economic conditions. The normalized 

base year demand for 2010 is estimated at 78 mgd for the City of San Francisco and 237 mgd for 
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the wholesale customers (Table 1-2) - total demand is 315 mgd. This is the represents the entirety 

of demand for customers and thus is greater than demand on the RWS.  

 

 
Figure 1-8 Historical demand on the RWS (black), projections of demand (colored symbols) and 

simulated demand scenarios for the stress test (dashed grey). 

The demand projection starts with the base year and adds incremental amount of demand based on 

projected increases in population growth, employment, income, and the price of water, as well as 

the expected implementation of additional water conservation programs by San Francisco and the 

wholesale customers. Changes in income and price were coupled with estimations of consumer 

elasticities of demand to reflect the demand response of customers to these exogenous variables. 

The Association of Bay Area Governments (ABAG) projections developed in Plan Bay Area 

(https://www.planbayarea.org) were used to calculate expected growth rates for demand factors, 

except for price. Water price projections are generated based on SFPUC rate projections and the 

historical record of Wholesale Customer rates increases. The final step of the forecast process is a 

demand adjustment to account for the expected implementation of conservation programs by 

individual water agencies. The projected demand for the service area is generated by calculating 

SFR, MFR and CI water demands at the agency level and them summing demands across sectors 

and across agencies. Finally, ‘Other’ demands such as governmental uses, dedicated irrigation, 

unaccounted losses are added to the total. These values are taken from 2015 UWMP from 

customers (SFPUC, 2016).  

 

For this study, the Brattle (2018) projection serves as the basis of our demand scenarios. The 2040 

demand projections are estimated at 87.1 mgd for the City of San Francisco and 290.4 mgd for the 

wholesale customers (Table 1-2). The total demand is projected at 377.5 mgd.  

https://www.planbayarea.org/
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Table 1-2: Summary of base year and year 2040 retail demands (Brattle, 2018) 

 Base year  Year 2040  

City of San Francisco 78 87.1 

Wholesale customers 237 290.4 

Total  315 377.5 

Demand on RWS (dry year) 243 287 

SFPUC share of total demand 

(fraction) 

0.77 0.76 

 

For SFPUC, an estimate of the demand on the RWS is needed for both the base year and year 

2040, as opposed to total water demand. Considering the active water conservation and non-RWS 

supplies available to wholesale customers, The Brattle report (2018) estimates 2040 demand on 

the RWS during a dry-year to be 243 mgd and 287 mgd in a normal year (Table 1-2). 

2. Baseline Demand 
In order to evaluate the effects of drivers of change on the RWS, the system baseline has to be 

established. Demand on the system is an important component of this baseline. Baseline demand 

consists of both retail and wholesale demands. In consultation with SFPUC, it was decided to use 

pre-drought conditions of fiscal year (FY) 2012-2013 as the basis for baseline demand.  

2.1. Retail Demand  

Baseline values for retail demand are provided in Table 2-1 and are drawn from a mixture of sales 

in FY2012-13, the BEACON data deliveries, and values provided in SFPUC’s 2015 Urban Water 

Management Plan (SFPUC, 2016). For the purpose of the system model, Cordilleras Mutual Water 

Company (MWC), a wholesale customer, was included in the retail demand. Demand for 

Cordilleras MWC is assumed constant over time. 

 

Table 2-1: Baseline retail demand for the LTVA stress test analysis 

Customer/ Region Average Daily 

Demand (mgd) 

In-City Retail   

Single Family Residential1 16.60 

Multi-Family Residential1 22.60 

Commercial and Industrial1 18.80 

Other retail demand2 9.90 

Water loss3 6.00 

Total in-City 73.9 

  

Suburban Retail  

Golden Gate Bridge Cemetery4 0.25 

Menlo Park Country Club4 0.22 
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NASA4 0.62 

San Francisco International Airport4 1.16 

Town of Sunol4 0.58 

Groveland CSD4 0.40 

Lawrence and Livermore National Laboratories4 0.80 

General Electric4 0.03 

Other suburban retail5 0.92 

Other6 0.01 

Total suburban retail6 5.00 

  

RETAIL TOTAL 78.90 

1 Historical sales data for FY2012-13, which is used by SFPUC as a benchmark 

for ‘normal’ conditions prior to the 2013-17 drought. 

2 This category includes other CI, institutional /governmental and landscape 

irrigation (both potable and non-potable). The estimates follow the same 

procedure as for the 2015 UWMP (SFPUC, 2016).  

3 Water loss is assumed constant at 6 mgd and follows the procedure of the 2015 

UWMP (SFPUC, 2016). 

4 Sales data from SFPUC Customer Bureau. This value is an average and is 

assumed constant over time. 

5 2015 UWMP provides a suburban retail demand total of 5 mgd. Other 

suburban retail represents the difference between this total demand value and the 

sum of suburban retail customers listed here. 

6 Cordilleras MWC is a wholesale customer. For the purpose of the system 

model, it was added to the suburban retail demand with a constant demand of 

0.01 mgd. 

 

2.2. Wholesale Demand 

Baseline values for the wholesale demand are provided in Table 2-2. The table shows annual sales 

for FY2012-13 and the fractions of the total demand that the sales represent. Total customer 

demand was established by dividing observed sales by the observed share of total demand. The 

fraction of demand met by the RWS varies from year to year for customers with multiple sources 

of supply, in particular in dry years. For this study, it was decided to keep this ratio constant and 

to set its value as that observed in FY 2012-2013. 

 

Table 2-2: Baseline wholesale demand for the LTVA stress test analysis. 

Wholesale Customer 

 

Total Demand 

in FY2012-131 

(mgd) 

Demand on the 

RWS in FY2012-

132 (mgd) 

SFPUC share 

of Total 

Demand3 (-) 

Alameda County Water District 43.17 9.06 0.21 

Brisbane/GVMID 0.32 0.32 1.00 

Burlingame 4.48 4.16 0.93 

CWS - Bear Gulch 12.71 12.08 0.95 
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CWS - Mid Peninsula 14.04 14.04 1.00 

CWS - South San Francisco 7.41 6.89 0.93 

Coastside County Water District 1.88 1.67 0.89 

Daly City 7.38 4.13 0.56 

East Palo Alto Water District 2.08 2.08 1.00 

Estero MID 4.05 4.05 1.00 

Hayward 15.48 15.48 1.00 

Hillsborough 3.25 3.25 1.00 

Menlo Park 3.24 3.24 1.00 

Mid-Peninsula 3.00 3.00 1.00 

Millbrae 2.30 2.28 0.99 

Milpitas 10.21 6.63 0.65 

Mountain View 10.83 9.09 0.84 

North Coast County Water District 2.51 2.51 1.00 

Palo Alto 11.80 11.33 0.96 

Purissima Hills Water District 1.99 1.99 1.00 

Redwood City 9.90 9.31 0.94 

San Bruno 3.73 2.01 0.54 

Santa Clara 21.77 2.18 0.10 

San Jose 4.89 4.50 0.92 

Stanford University 3.39 2.14 0.63 

City of Sunnyvale 19.87 9.54 0.48 

Westborough Water District 0.91 0.91 1.00 

Cordilleras MWC 0.01 0.01 1.00 

1 Estimated using the observed sales in FY2012-2013 (see reference below) and the observed RWS share of 

total demand.  

2 Historical sales data for FY2012-13, which is used by SFPUC as a benchmark for ‘normal’ conditions prior to 

the 2013-17 drought. 

3 Reference needed 

 

3. Uncertainty and Sensitivity of Demand Projections 

3.1. The case for uncertainty analysis 

Demand forecasting is a fundamentally important exercise for water agencies in their long-term 

planning processes (Billing and Jones, 2011; Kiefer et al. 2016; Paton et al. 2013). How much 

demand will there be for water in the future? How much supply will be required to continue to 
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deliver a reliable service? How much will it cost to do so? and what are the financial implications 

for the consumer? In answering these questions, water agencies must attempt to predict how the 

future will manifest under a confluence of highly uncertain socio economic and climatic 

conditions. Getting it wrong can have significant economic, societal and environmental 

consequences. Overestimating poses the risk of over investment, stranded assets and high water 

rates, whilst underestimating can cause an increased risk of drought and water shortages. Forecasts 

of demand are rarely realized to a high degree of accuracy and have been spectacularly wrong in 

the past (Kiefer et al, 2016; Walker, 2012). Kielder Reservoir, the largest in the United Kingdom, 

was built in anticipation of significant employment and population growth that never materialized 

and today lies mostly idle (McCulloch, 2006).  

Despite the central role of demand forecasting in any water utility planning exercise, and despite 

the substantial uncertainties associated with the key drivers of demand – population growth, 

economic growth, demographic change, climatic trends, land use change – surprisingly little 

attention has been paid to understanding the uncertainty associated with demand estimations, nor 

what the major drivers of that uncertainty are (Paton et al. 2013). In the face of this myriad of 

complex and interdependent drivers, a key question is - how wrong can you be? What is the 

plausible envelope of possible outcomes one can expect? and what are the drivers of that 

uncertainty? 

Demand is typically evaluated in a deterministic fashion, using per capita consumption estimates 

or econometric models to produce point estimates of future demand (Billings and Jones, 2011; 

Fullerton and Molina, 2010; House-Peters and Chang, 2011; Kiefer et al., 2016; Rinaudo, 2013). 

Econometric approaches that estimate the response of customer classes to a variety of exogenous 

variables emerged in the 1980’s, recognizing the importance of socioeconomic and climatic 

influences (Maidment et al. 1985; Maidment and Miaou, 1986), and are most common practice for 

large water utilities in the USA (Kiefer et al., 2013).  

Water utilities most commonly plan for a single conception of what the future will look like. Those 

that do seek to explore uncertainty mostly do so by testing their plans against a handful of 

qualitatively derived scenarios that represent ‘most likely’ futures (Groves et al. 2015; Haasnoot 

et al., 2013; Kiefer et al. 2016). This approach assumes that decision makers can predict what the 

most likely future is, and which specific set of conditions will lead to its manifestation. Table 3 

provides an overview of some notable examples of water demand and/or supply studies that have 

sought to address the uncertainty and sensitivity of their forecasts. Bureau of Reclamation (2012), 

Rayej et al. (2014), Groves et al. (2015), and Paton et al. (2013) all adopt a narrative based 

approach to define a small number of scenarios that provide a range of possible future demand. 

These studies, and many others, consider that population and employment growth will be the 

primary drivers of future ‘high’ and ‘low’ values of demand and as such, scenarios are largely 

expressed as variants in these parameters. Variations in income growth, price, nor elasticity values 

are explicitly explored. Hazen and Sawyer (2012) provide the only example we are aware of that 

takes a probabilistic approach to forecasting demand. In this case the probability distributions of 

socioeconomic and climatic variables were defined, and Monte Carlo simulation used to generate 

many realizations of demand and thus, confidence intervals around their central estimate. 

However, the analysis did not investigate which independent variables were the key drivers of this 

uncertainty, nor were elasticity of demand estimates included as uncertain variables. The range of 

demand forecasts in these studies is provided in Table 3 where available. Rayej et al. (2014) and 

Hazen & Sawyer (2012) are comparable at ~100%, whilst the range of scenarios used by the 

Bureau of Reclamation (2012) and Groves and Bloom (2013) was ~20%. Although conclusions 

are inferred regarding the sensitivity of the model across different demand scenarios, no 

quantitative approach is taken to measure model sensitivity as a distinct analytical step.  
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Decision making under deep uncertainty has emerged as an important field in recent decades, 

largely to support water managers in accounting for the significant uncertainty associated with 

climate change projections on hydrological systems. A growing body of literature provides well 

established mathematical models (Brown et al., 2012; Groves et al., 2015; Lempert et al., 2004; 

Weaver et al., 2013) that support the decision maker in identifying future conditions under which 

a policy fails to meet its goals (Walker et al. 2013; Hallegatte et al. 2012). These include 

approaches to generating many thousands of realizations of the future – through Latin Hyper Cube 

Sampling (McKay et al., 1979), Monte Carlo Simulation (Helton and Davis, 2003), and Sobol 

sequences (Saltelli, 2010; Sobol and Levitan, 1999) - for sensitivity analysis (Saltelli et al.1999, 

2008, 2010; Sobol, 2001); and for scenario discovery (Bryant and Lempert, 2010; Friedman and 

Fisher, 1999; Groves and Lempert, 2007). To our knowledge these methodologies have not yet 

been applied to the question of long-term urban water demand forecasting. 
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Table 3-: Notable examples of water demand studies that have sought to account for uncertainty 

associated with demand forecasts. 

Study Title Location Scope Demand forecast 

methodology 

Uncertainty Analysis Approach Range of demand 

scenarios 

Increase in demand 

(% growth by 2070) 

Sensitivity Analysis 

Colorado River 

Basin Water Supply 

and Demand Study, 

(Bureau of 

Reclamation, 2012; 

Groves and Bloom, 

2013) 

Colorado, 

USA 

Basin wide study 

across six States to 

develop 1959 

scenarios of future 

streamflow, six 

demand scenarios 

and two reservoir 

operation 

scenarios.  

Per Capita and unit area 

irrigation requirement 

estimates coupled with 6 

scenarios of combinations 

of population, households, 

employment, irrigated 

land area and 

environmental IFR’s. 

Narrative based approach to 

develop six scenarios of low, 

medium, high demand based on of 

potential variations in population, 

employment, land use, irrigated 

crop area, environmental 

requirements, and conservation. 

These scenarios provide an 

envelope of demand projections. 

No account for price or income. 

1.2 MAF to 5 MAF 

(5% to 24%) 

 

Population growth: 

22.5% - 92.5% 

No direct sensitivity 

analysis conducted. 

Differences in results across 

scenarios used to infer 

sensitivity of the model to 

input parameters. 

Found model to be most 

sensitive to population 

growth.  

Scenarios of Future 

California Water 

Demand Through 

2050, 

(Rayej et al., 2014) 

California, 

USA 

Statewide study to 

develop 108 

scenarios to 

quantify future 

water demand for 

California. 

Indoor demand and 

outdoor per capita water 

use derived from 

econometric model that 

incorporates elasticity 

factors accounting for 

income, price, family size 

and conservation and 

climate.  

Narrative based approach to 

develop nine scenarios of 

population growth x development 

density and 12 scenarios of future 

climate. No account for income 

growth, price increase or elasticity 

uncertainty. 

1 MAF to 7MAF  

(16% - 119%) 

 

Pop growth -  

26% - 92% 

CI growth -  

6% - 90% 

No direct sensitivity 

analysis conducted. 

Differences in results across 

scenarios used to infer 

sensitivity of the model to 

input parameters. 

Found output to be most 

sensitive to population 

growth. 

Developing Key 

Indicators for 

Adaptive Water 

Planning  

(Groves et al. 2015) 

Southern 

California, 

USA 

Application of 

RDM framework 

to Metropolitan 

Water District of 

California Service 

Area that 

developed 12 x 

climate, 26 x local 

supply yield, 3 x 

infrastructure 

upgrade and 4 x 

demand 

Econometric model 

employing elasticities of 

demand for climate, 

household size, income, 

price, conservation and 

housing density 

explanatory variables.  

A narrative based approach to 

develop four scenarios of demand 

based on demographic changes. 

Income growth rate remains 

constant across all scenarios. No 

account for income, price or 

elasticity uncertainty. Scenario 

discovery performed using PRIM 

analysis across results to establish 

conditions that lead to policy 

failure. Demand is determined to be 

a primary driver of vulnerability 

under ‘high growth’ scenario. 

Unclear 

 

CI growth:  

40% - 58% 

 

Income Growth: 

36% 

No direct sensitivity 

analysis 

conducted. Differences in 

results across scenarios used 

to infer sensitivity of the 

model to input parameters. 

Found output to be most 

sensitive to demand and 

infrastructure upgrade. 
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Relative magnitudes 

of sources of 

uncertainty in 

assessing climate 

change impacts on 

water supply 

security for the 

southern Adelaide 

water supply system 

(Paton et al. 2013) 

Adelaide, 

Australia 

Scenario based 

sensitivity analysis 

to establish the 

greatest drivers of 

uncertainty in 

security of supply 

estimates. 

Assessment of 

climate change 

impacts on 

Adelaide’s water 

supply system. 

Per capita indoor and 

outdoor consumption 

estimates for residential 

and commercial industrial 

sectors.  

Narratives of potential 

socioeconomic and technological 

drivers of demand expressed in 

variants of per capita and 

population growth (median, 5th and 

95th percentile of national forecast) 

Unclear Scenario based approach 

introduces uncertainty one 

by one from base case to 

qualitatively rank relative 

contributions of each 

uncertain parameter. Found 

demand to be the greatest 

source of uncertainty in all 

cases, ahead of climate 

change uncertainty. 

Tampa Bay Water 

Probabilistic 

Demand 

Forecasting 

Procedure 

(Hazen & Sawyer, 

2012; Kiefer et al. 

2016) 

Tampa 

Bay 

Florida, 

USA 

Long-term water 

demand 

forecasting study 

to inform long 

term investment 

strategy for Tampa 

Bay Water 

Probability distributions 

generated from historical 

observed changes to 

generate 'traces' of key 

model inputs (household 

income, housing density, 

and other socioeconomic 

variables) and empirically 

derived monthly 

distribution estimates for 

weather variables. 

Resulting distributions run 

through monte carlo 

simulations and run 

through econometric 

demand model. 

Monte Carlo simulated realizations 

of future demand provide 

confidence intervals that are used 

by Tampa Bay Water to understand 

the possible envelope surrounding 

the mean demand projection. 

15 MGD to 100 MGD 

(14% to 109%) 

No sensitivity analysis 

conducted.  

*The time scale considered varies from study to study. This 2070 takes the annual escalation estimated by 

the study and extrapolates to 2070 to facilitate comparison with analysis in this wor
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1.2 Methods for Uncertainty Analysis 

Analysis in this phase is focused on understanding the plausible envelope of uncertainty within 

which we can place SFPUC’s existing 2040 projection of demand developed by the Brattle Group 

(2018). In addition, we are interested in exploring which parameters contribute most to this 

uncertainty. The intention is not to predict how the future might unfold nor establish the right 

answer with regards how much demand one should expect. Experiments are focused on 

characterizing the depth and nature of the uncertainty such that we develop a set of demand 

scenarios that capture the range of plausible future scenarios that SFPUC can expect by the year 

2070. In addition, we seek to understand the drivers of this uncertainty – which parameters 

contribute most to the variance in the projection of demand? Are there certain parameters towards 

which we should focus our policy efforts in order to mitigate against the uncertainty they drive? 

And, are certain variables robust predictors of very high or very low values of demand? 

 

Figure 3-1: Schematic showing the approach taken for uncertainty and sensitivity analysis. 

As a first step, we reconstruct the econometric model used by the Brattle Group (Brattle Group, 

2018) to generate the demand forecast currently in use by SFPUC in its long term planning 

processes – Step A in Figure 3-1. Demand is calculated per sector as a function of population 

growth, economic growth, and of consumer response to changes in water price, median household 

income, precipitation and temperature. In order to establish the possible range of future demand 

and test the sensitivity of the model to its inputs (Step B), uncertain variables are sampled across 

defined distributions using Saltelli’s (2010) extension of Sobol’s sequence (Sobol, 1967) (Sobol’s 

sequence is a quasi-random Monte Carlo method that ensures uniform sampling across the 

distribution of uncertain variables) to generate many thousands of plausible realizations of demand 

– Step C. In Step E, the sensitivity of the model to uncertain variables is first explored through 

linear regression and subsequently, through global sensitivity analysis provided by Sobol (2001). 
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The range and distribution of uncertainty associated with the model is explored through summary 

statistics and exceedance probability curves. The assumption of independence between uncertain 

variables is robust in this context due to ex-post examination of results in Step D. Scenario 

discovery, employing the Patient Rule Induction Method (PRIM), is used to establish which 

conditions lead to realizations of demand that would leave the SFPUC system vulnerable, i.e. at 

risk of not meeting its level of service goals. It is in this step where one can examine the likelihood 

that such conditions will materialize. We utilize pen source Python packages provided by Herman 

and Usher (2017), Kwakkel, (2017), and Hadka (2017) to execute various steps throughout the 

analysis.  

3.1.1. Step A - Water demand model  

Model structure and assumptions 

In order to conduct uncertainty and sensitivity analysis on this model of demand, we first 

reconstructed the model used to generate the Brattle projection of demand. The demand model 

establishes demand of Single Family Residential (SFR), Multi-Family Residential (MFR) and 

Commercial Industrial (CI) customer classes for each of the 27 wholesale customers within the 

SFPUC service area at the annual timestep. The model schematic provided in Figure 3-1 illustrates 

how demand is calculated for each wholesale customer for a given timestep. It should be noted 

that the ‘Government & Other’ sector, which accounts for 20% of total demand across the SFPUC 

service area (see Figure 4) is not included in this analysis and thus the range of demand generated 

is likely to underestimate the uncertainty. 

The governing equations for the demand model are provided in equations 1 through 3 where 𝑖 
denotes the customer class, t denotes the time step, 𝑞 is the consumption per household or 

employee, 𝜀 𝑘
𝑖  is the elasticity of demand to variable k, %∆𝑘 is the annual escalation of variable k 

and %∆i is the annual escalation in the size of customer class i. 𝑄𝑡
𝑖 is the total demand for customer 

class i in timestep t.  

𝑙𝑛 (𝑞 
𝑡
𝑖 )  =𝑙𝑛 (𝑞 

𝑡−1
𝑖 ) + (𝜀𝑝𝑟𝑖

𝑖 × %∆𝑝𝑟𝑖𝑐𝑒) + (𝜀𝑖𝑛𝑐
𝑖 × %∆𝑖𝑛𝑐) + (𝜀𝑝𝑐𝑝

𝑖 × %∆𝑝𝑐𝑝) + (𝜀𝑡𝑚𝑝
𝑖 × %∆𝑡𝑒𝑚𝑝) (1) 

# 𝑜𝑓 𝑖𝑡 = # 𝑜𝑓 𝑖𝑡−1 × %∆𝑖 (2) 

𝑄𝑡
𝑖 = # 𝑜𝑓 𝑖 𝑡  × 𝑞 𝑡

𝑖  (3) 

Equations 1 through 3 hold for all customer classes with a couple of adjustments. First, income 

and price elasticity for SFR households are calculated as a function of water price and median 

household income at each time step in the time series (equations 4 and 5). In the case of SFR, the 

regression coefficients for income (𝛽𝑙𝑛 (𝑖𝑛𝑐) ), price (𝛽𝑙𝑛 (𝑝𝑟𝑖) ) and the covariate coefficient of 

income vs price (𝛽𝑙𝑛 (𝑖𝑛𝑐 𝑥 𝑝𝑟𝑖)) are inputs to the model and the calculation of price and income 

elasticity are intermediate outputs (see Figure 7) order to ensure these elasticities reflect consumer 

response to changes in real price and income, price and income values used in the derivation of 

elasticities are expressed in 2000 real terms2, assuming an inflation rate of 2% per year (equations 

6 and 7). Nominal Price and income for the year 2010 (𝑝𝑟𝑖𝑛𝑜𝑚(2010), 𝑖𝑛𝑐𝑛𝑜𝑚(2010)), the year in 

which the model is initialized, are provided as inputs to the model and the time period is denoted 

by 𝑛 (n=11 in 2011, n=12 in 2012 etc).  

 
2
 2000 was the index year used by the Brattle group in the regression model used to derive consumer elasticities of 

demand (Brattle, 2015) 
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𝜀 𝑖𝑛𝑐
𝑆𝐹𝑅 = 𝛽 𝑙𝑛 (𝑖𝑛𝑐)  +  𝛽 𝑙𝑛 (𝑖𝑛𝑐 𝑥 𝑝𝑟𝑖) 𝑥 𝑙𝑛(𝑝𝑟𝑖) (4) 

𝜀 𝑝𝑟𝑖
𝑆𝐹𝑅 = 𝛽𝑙𝑛 (𝑝𝑟𝑖)  +  𝛽𝑙𝑛 (𝑖𝑛𝑐 𝑥 𝑝𝑟𝑖)  𝑥 𝑙𝑛(𝑖𝑛𝑐) (5) 

𝑝𝑟𝑖𝑟𝑒𝑎𝑙(𝑡) =  
𝑝𝑟𝑖𝑛𝑜𝑚(2010)  × (1 + (%∆𝑝𝑟𝑖𝑐𝑒 × 𝑛)

(1 + 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒)10+𝑛
 

(6) 

𝑖𝑛𝑐𝑟𝑒𝑎𝑙(𝑡) =  
𝑖𝑛𝑐𝑛𝑜𝑚(2010)  × (1 + (%∆𝑝𝑟𝑖𝑐𝑒 × 𝑛)

(1 + 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑟𝑎𝑡𝑒)10+𝑛
 

(7) 

 

Second, only price, precipitation and temperature are considered as factors influencing demand for 

the Commercial Industrial (CI) sector. 

The elasticities of demand used in this study are presented in Table 4 and are drawn from 

regression analysis conducted by the Brattle Group (Brattle, 2018) to establish the likely response 

of each customer class to various drivers of demand, based on observed behavior of customers 

from FY1996-97 through FY2010-11. 

Due to the lack of available data associated with MFR accounts, analysts (Brattle, 2018) were 

unable to derive specific responses of this customer class to changes income, temperature or 

precipitation. In their reviews of income and price elasticities of demand for residential demand, 

Dalhuisen (2003) and Sebri (2014) found income elasticity to increase with increasing housing 

density, implying a more elastic response from MFR to increases in real median incomes. 

However, due to a lack of information, and because values of income elasticity for SFR are higher 

than considered in other regional studies (median of 0.966 across customers in 2010), MFR is 

assumed to have the same income elasticity as the SFR sector and remains fixed across all 

scenarios. MFR and SFR are assumed to have the same response to precipitation and temperature.  

It should be noted that the Brattle Group (2018) did not include climate as a driver of demand 

(temperature and precipitation), nor did they include income as a driver of demand for the MFR 

sector. For the purposes of the uncertainty analysis temperature and precipitation (for all customer 

classes), and income (for SFR and MFR) were all included in the sampling and governing 

equations provided in equations 1-7. 

How do elasticity estimates compare to other water demand studies? 

In their study of future water demand for California, California Department of Water Resources 

(Rayej et al, 2014) used price elasticities of demand for SFR, MFR and CI of -0.16, -0.05 and -

0.085 respectively and income elasticities of demand for SFR and MFR of 0.4 and 0.45 

respectively. The results of the Brattle Group analysis across SFPUC service area would imply 

that its customers have a much more elastic response to both changes in price and income than is 

assumed in the California Water Department Study (SFR sector has a median price elasticity of -

0.38 and median income elasticity of 0.97 in 2010 in the Brattle study).  

Also, of particular relevance to this study is the Metropolitan Water District of California’s study 

of water demand in Southern California (Groves et al., 2015) who used elasticities of demand for 

SFR, MFR and CI of -0.19, -0.16 and -0.16 respectively and income elasticities of demand for 

SFR and MFR of 0.27 and 0.31 respectively. Once again, the results of the Brattle Group analysis 

would imply that SFPUC customers have a much more elastic response to income and to price for 

SFR customers. 
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Table 3-1: Elasticities of demand per customer class. Elasticities represent the average demand 

response to a 1% increase in the demand factor. For example, a 10% increase in price would 

cause a -1.7% decrease in demand for Multi-family Residential and a 1.51% decrease in demand 

from the Commercial Industrial sector. 

 Elasticity - average demand response to a 1% increase in the demand factor 

 
Single Family 

Residential 
Multi-Family Residential Commercial Industrial 

  Elasticity 95% conf 

interval 

Elasticity 95% conf 

interval 

Elasticity 95% conf 

interval 

Price - - - -0.17  -0.26 -0.08 -0.151 -0.34 0.04 

𝜷ln(pri) -1.85 -2.21 -1.48 - - - - - - 

Median 

household 

income 

- - - - - - - - - 

𝜷ln(inc) 0.36 0.19 0.52 - - - - - - 

𝜷ln(incxpri) 0.56 0.42 0.70 - - - - - - 

Annual 

precipitation 

-0.090 -0.13 -0.05 - - - -0.04 -0.11 0.03 

Average daily 

summer 

maximum 

temperature * 

0.109 -0.08 0.3 - - - 0.482 -0.72 1.68 

* for the purposes of this study we assume that a 1-degree increase in mean annual temperature will correspond to 

an equivalent increase in average daily maximum temperature. 

 

3.1.2. Step B - Quasi Random Sampling 

Thoughtful consideration of meaningful distributions over which to sample independent variables 

is critical to the success of any sensitivity analysis (Saltelli, 2008; Saltelli, 2010; Ioos and Lemaître, 

2015). This means establishing the range of uncertainty and distribution associated with each 

variable. In this study, we present two cases of analysis for which the results of analysis are 

presented:  

● Case 1: Regional Forecasts Uncertainty considers the growth rates in exogenous drivers 

of demand (population growth, employment growth, price, income, temperature and 

precipitation) as its uncertain variables. In order to establish the range for growth in 

population, employment and income regional forecasts of population growth, 

demographic change and economic growth from different sources were examined and a 

‘high’ and ‘low’ projection extracted to provide the bounds over which each variable is 

sampled. In the case of price, we used the range of projected price increase across all 
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wholesale customers established by the Brattle Group (2018). High and low scenarios of 

temperature and precipitation change were drawn from RAND (2019).  

● Case 2: Regional Forecasts and Elasticities Uncertainty extends the analysis by also 

accounting for the uncertainty associated with the elasticity of demand estimate. These 

elasticities describe the demand response of customers to changes in the exogenous 

variables that are the focus of Case 1. As in any regression analysis, the regression 

coefficients established by Brattle (2018) have a 95th percentile confidence interval that 

describes the range of values within which one can be 95% confident that the true value 

of the parameter lies. For example, the regression coefficient for price, 𝛽𝑙𝑛 (𝑝𝑟𝑖) , lies 

between -1.48 and -2.21. Over the course of the time horizon in question, a regression 

coefficient of -2.21 is likely to produce significantly different results than if a value of -

1.48 is used. To account for this additional uncertainty, and to compare their relative 

contribution to the overall uncertainty, elasticities of demand are included in Case 2 as 

uncertain parameters and sampled across their 95th confidence interval values (see Table 

4-1).  

In this study we employ an extension of Sobol’s sequence (Sobol and Levitan, 1999) provided by 

Saltelli (2010). Converse to Monte Carlo, and similarly to Latin Hyper Cube sampling, Sobol 

sequences are ‘quasi random’ – points ‘know’ about the position of previous point and fill the gaps 

between them to ensure that all parts of the sample space are represented (Saltelli, 2010).  

The distributions of each of the uncertain parameters is provided in Table 3-2. The number of 

samples generated by the sampler is a function of the number of variables and is given by N x (2D 

+ 2) where N is an input given by the analyst (often referred to as the computational cost) and D 

is the number of variables being sampled. This results in 18,000 samples for Case 1 (8 variables 

and N=1000) and 36,000 samples for Case 2 (16 variables and N=1000).  

Table 3-2: Distribution of independent variables across cases considered in analysis 

Parameter Abbreviation Distribution 

of Values (p/a 

escalation) 

Total 

Growth  2010-70 

(range) 

Comments 

Price PRI_SFR 0.0223 to 

 0.0321 

133.8% - 192.6% 

(58.8%) 

Used range across wholesale 

customers in 2015 Urban 

Water Management Plans. 

Brattle (2018) 

Income INC 0.00958 to 

 0.0205 

57.48% to 123% 

(65.52%) 

ABAG (2009) forecasts a 

mean of 57% across wholesale 

customers 

CEF (2017) forecasts a mean 

of +123% by 2070 across Bay 

Area Counties 
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Conservation CON 0.000 to 

0.00820 

0% - 49.2%  

(49.2%) 

Used range across wholesale 

customers in 2015 Urban 

Water Management Plans. 

Brattle (2018) 

Single Family 

Residential 

Growth 

SFR 0.00343 to 

0.00677 

20.6% - 30.6% 

(10%) 

2040 population forecasts: 

Low- Pitkin & Myers (2012) 

2010-40 +25%; High - ABAG 

(2017): 2010-40 +33.2% 

(Housing projections are 

derived from population 

projections. The ABAG 

household projections utilize a 

population projection that is 

~5% higher than those 

provided by Pitkin and Myers 

(2012)) 

Multi-Family 

Residential 

Growth 

MFR 0.0108 to 

0.0125 

65.19% - 75% 

(10%) 

Commercial 

Industrial 

Growth  

CI 0.00980 to 

0.0153  

58.8% - 92.0% 

(33.2%) 

Low: mean across wholesale 

customers, +37.7% 2010-40 

ABAG (2017); High: + 88% 

2010-70 CEF (2017) 

Temperature TMP 0 to 

 0.00710 

  Representing 0 to 6 degrees 

Celsius warming and +/-30% 

change in precipitation, 

defined as most likely range 

by regional climate experts 

(RAND, 2019) 

Precipitation PCP -0.00333 to 

0.00333 

  

 

3.1.3. Step D - Scenario Discovery 

The intention of scenario discovery is to identify whether combinations of uncertain model inputs 

are reasonable predictors of a model output (Bryant and Lempert, 2010). The hope is that, through 

this analysis, one can better understand which conditions might lead to policy failure. The 

approach provided by Bryant and Lempert employs the Patient Rule Induction Method (PRIM), a 

Bump Hunting algorithm (Friedman and Fisher, 1999) that slowly (‘patiently’) peels back layers 

of the output space to identify subspaces or ‘boxes’ that characterize samples of interest. Samples 

of interest are defined as model outputs that are above some defined threshold. In the context of 

this study, we investigate scenarios of demand that fall above the 75th percentile of all model 

outputs. This provides us with a large enough sample size for the algorithm to search within whilst 

also ensuring not all variables are included in the box definition – i.e. are constrained to some 

degree. In reality, demand above the 75th percentile is far beyond what SFPUC currently plans for 

and would be untenable for the existing system. 

A box (𝐵𝑘) is a hyper-rectangle that describes the intersection of subsets of values for each input 

variable. Let 𝑠𝑗𝑘 describe a subset of all possible values of input variable 𝑥𝑗  and 𝑆𝑗 denote all 

possible values of 𝑥𝑗. For the case in which the subset of values is the entire set, i.e.  𝑠𝑗𝑘 = 𝑆𝑗, the 

corresponding factor  𝑥𝑗 ∈ 𝑆𝑗 can be omitted from the box definition. The input variables for which 

𝑠𝑗𝑘 ≠ 𝑆𝑗 are those that define the box (Friedman and Fisher, 1999): 
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𝑥 ∈ 𝐵𝑘⋂𝑠𝑗𝑘≠ 𝑆𝑗
(𝑥𝑗 ∈ 𝑠𝑗𝑘) (8) 

 

Box induction occurs by first starting with a box that covers the entire dataset. With each iteration, 

a subbox of the previous is box is removed to produce the next, smaller box in the sequence. This 

iterative process of peeling back the sample space stops when the mean value of samples remaining 

in the subbox surpasses the target threshold. The boundaries of the resulting box are defined by 

the constrained values of the input variables.   

In searching for boxes in the output space, PRIM seeks to maximize two measures of scenario 

quality; 1) coverage: the proportion of total cases of interest that are in the selected box, 2) density: 

the purity of the scenario space, i.e. the ratio of cases of interest to the total number of cases in that 

scenario. Coverage can be interpreted to mean the precision of positive predictive value (Dalal et 

al., 2013) whilst density is the overall predictive value, i.e. high density implies that the constrained 

variables that define a given box are highly predictive of model outcomes. The aim is to cover as 

many of the samples of interest as possible whilst containing as few as possible irrelevant samples 

(Kwakkel and Jaxa-Roxen, 2016). However, increases in one of these metrics is usually done so 

at the expense of the other (Kwakkel, 2017). 

Box induction occurs recursively until all possible boxes have been defined. The result is a pareto 

front that trades off coverage and density metrics from which the analyst must decide which box 

they wish to examine in order to characterize samples that fall above the defined ‘policy failure’ 

threshold. 

3.1.4. Step E - Sensitivity Analysis 

Sensitivity analysis is concerned with understanding how uncertainty in the model output can be 

apportioned to the uncertainty associated with each of its input parameters and allows us to assert, 

for example, that this input "alone is responsible for 70% of the uncertainty in the output" (Saltelli, 

2002; Saltelli, 2019). This understanding is useful in several ways:  

● Identifying which factors contribute most to uncertainty in the model and thus warrant 

further investigation in order to reduce this uncertainty in the future. 

● Identifying factors which interact and may propagate uncertainty. 

● Model corroboration. Is the inference robust? Is the model overly dependent on fragile 

assumptions? 

Many methods exist for sensitivity analysis but can be broadly characterized into two approaches; 

local sensitivity analysis (typically derivative based and considers the change in the model output 

when one variable is altered), and global sensitivity analysis that considers the entire variation 

range of inputs (typically evaluated using ANOVA). In this study, we employ both local sensitivity 

analysis (through linear regression) and global sensitivity analysis (through Sobol sensitivity 

indices).  

Sobol sensitivity analysis (Sobol, 2001) is a variance-based approach that decomposes the variance 

in the model output according to its uncertain inputs. In their review of sensitivity analysis 

approaches, Ioos and Lemaitre (2015) provide a ‘decision tree’ for analysts in deciding which form 

of sensitivity analysis to employ. Sobol is recommended for nonlinear problems in which the 
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number of uncertain parameters is less than 20 and for which the model is not too computationally 

intensive. Sobol provides an advantage over other forms of sensitivity analysis in that it allows 

one to not only consider the individual contribution of each of the input parameters to the overall 

uncertainty, but also the contribution of multiple parameters in combination.  

Sobol’s first order index (𝑆𝑖), provided by equations x, describes the relative importance of the 

uncertain variable 𝑋𝑖 by considering the variance in the expected value of 𝑌 (the model output) 

given all possible values of 𝑋𝑖 as a proportion of the total variance 𝑉(𝑌): 

𝑆𝑖 =
𝑉(𝐸( 𝑋𝑖))

𝑉(𝑌)
 

(9) 

Sobol’s total order index (𝑆𝑇𝑖), provided by Equation 10, describes the total contribution of a 

variable to variance in the output, which includes both first order contributions as well as variance 

from the combination of the variable in question and any other model variables. The second term 

in Equation 10 describes the variance in the expected value of 𝑌 (the model output) given all terms 

but the variable question (𝑋−𝑖). Given the sum of all possible sensitivity indices must equal 1, the 

difference must be made up of all terms that include 𝑋𝑖: 

𝑆𝑇𝑖 = 1 −  
𝑉(𝐸(𝑌|𝑋−𝑖))

𝑉(𝑌)
 

(10) 

 

3.2. Results 

3.2.1. What is the range of uncertainty associated with a single model of demand? 

The range of uncertainty varies considerably across the two cases presented here. Table 7 indicates 

the range in demand values in absolute terms and as a percent change relative to the 2010 baseline 

of ~281,000 AF/year. Whilst the range associated with Case 1 (27% - 183%) is comparable to 

those found by Hazen & Sawyer (2012) (14% - 109%), and Rayej at al. (2014) (16% - 119%), the 

range for Case 2, in which elasticity of demand uncertainties are included, result in ranges three to 

four times larger than any examples found in the literature. In addition, Case 2 shows a decrease 

in demand in the lower ranges, which is an outcome we have not come across in anywhere in the 

literature. The red dotted lines displayed in Figure 8 and Figure 9 show where the existing SFPUC 

demand projection in 2040 sits relative to the distributions of the two cases presented here.   

 

Table 3-3: Change in demand by 2070 relative to 2010 baseline of 281 TAF/year 

 Minimum Median Maximum 

 (AF) % increase (AF) % increase (AF) % increase 

Case 1: Regional 

Forecasts 

356,191 27% 538,636 91% 796, 514 183% 

Case 2: Regional 

Forecasts and 

elasticity uncertainty 

265,383 -6% 563,575 101% 1,458,051 419% 
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Demand is not normally distributed given the exponential nature of the governing equation of 

demand provided in Equation 1. The box plots and exceedance probability curves in Figure 8 and 

Figure 9 indicate a lognormal distribution, with a large tail towards higher values of demand. 

However, a formal statistical test would need to be conducted to confirm this. This tail is most 

pronounced in Case 2, when the uncertainty associated with elasticity estimates is included.  

 
Figure 3-2: Box plot showing distribution of demand realizations for Case 1 (blue) and Case 2 

(orange)  
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Figure 3-3: Exceedance probability curves of demand for Case 1 (blue) and Case 2 (orange). 

The Brattle forecast of demand in 2040 is indicated by the dashed grey line, the extrapolated 

Brattle forecast in 2070 is provided by the grey dash-dot line and the upper bound for demand 

scenarios presented here is provided by the dotted red line.  

 

3.2.2. What conditions lead to ‘unacceptably’ high values of demand? 

The density versus coverage trade off curves resulting from the application of PRIM to both Cases 

is presented in Figure 3-4. The points on the trade-off curves represent different sub spaces of the 

sample space of interest, whilst the values on the x and y axis provide their values of coverage and 

density respectively. The trade of curve for Case 1 provides relatively good metrics of coverage 

and density as can be seen from the convex nature of its trade off curve. Results from Case 2 are 

not as promising, showing a shallow, linear trade off curve that does not offer good options for 

boxes with both a high coverage and high density score. In addition, the number of constrained 

variables in each box (denoted through the color scale shown to the right of the plots) quickly 

increases to more than four variables for boxes with high density scores. This indicates a more 

complex picture than Case 1 with regards to which variables are accurate predictors of high 

demand – it is several factors in combination that result in high demand and there are many other 

conditions that also lead to high demand, indicated by the high proportion of samples of interest 

outside the box (coverage). 
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Figure 3-4: Density vs coverage tradeoff for Cases 1 (left) and 2 (right). Dots on the pareto front 

represent different Boxes found by the algorithm. The color of the dot indicates the number of 

input variables that are constrained according to the color scale to the right of the plot. 

The box selected for Case 1 has a score of 80% for both coverage and density and thus provides 

reasonable predictive accuracy in establishing which conditions are likely to lead to high values of 

demand. The box coverage plot for this box is provided in Figure 3-5. Blue dots represent samples 

in the output space that fall below the defined ‘policy failure’ threshold, whilst red dots represent 

output samples of interest, i.e. those that result in demand higher than the 75% percentile of all 

model outputs. This provides us with a large enough sample size for the algorithm to search within 

whilst also ensuring not all variables are included in the box definition – i.e. are constrained to 

some degree. Visual inspection of the box (shown by the solid black line) confirms the high score 

for coverage and density: the majority of the samples of interest fall within the box (coverage) and 

most of the samples within the box are those of interest (density). Only two variables are shown 

to be constrained in this box: growth in income and price. Although price appears in the box 

definition, its values are constrained to growth of between 133.8% and 192%, which is almost the 

entire range over which this variable was sampled. Only price growth in the top 0.6% of its 

distribution are not represented in this box. This tells us that almost all values of price growth lead 

to these very high values of demand – only those samples in which price growth is between 192% 

growth and 192.6% growth by 2070 fall below the 75% percentile in terms of total demand in 

2070. Income on the other hand is significantly constrained: only income growth of between 108% 

and 123% lead to values of demand that fall in the highest 25% of all model runs. This represents 

only the top 23% of the distribution over which income growth was sampled and indicates that 

high income growth is highly predictive of high demand under this model. It is worth pausing to 

remember the important role that income plays in driving the price elasticity of demand for single 

family residential households. Recall from Equation 5 that the price elasticity of demand for single 

family residential households is driven by the regression coefficient of price, the covariate 

regression coefficient of price times income and real income in the given timestep. Under 

conditions of high-income growth, the response of consumers to price is less elastic, i.e. less 

negative, leading to high demand even under conditions of high price growth.  
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Figure 3-5: Box Coverage plot for Case 1. Red dots indicate samples of interest (those in which 

demand in 2070 is above the 75th percentile of all model outputs), blue dots are samples not of 

interest and the black solid line indicates the chosen Box. The degree to which input variables 

are constrained can be examined by considering the position of the box against the axis for each 

input variable. 

When considering the box coverage plots for Case 2 (see Figure 3-6), a box with a score of 60% 

for density and coverage was chosen. Income growth is once again constrained to the higher end 

of its distribution (although less so than in the instance of Case 1) with growth restricted to between 

90% and 123% growth by 2070, representing the top 50th percentile of its distribution. In this Case, 

the regression coefficients for price and the covariate of income x price for SFR are also found to 

be constrained to the higher end of their distribution (the top ~50th percentile for the covariate 

coefficient of price x income and the top ~75th percentile for the regression coefficient of price). 

The presence of the covariate of price x income in the box definition provides further evidence of 
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the important role that income and price elasticity plays in driving demand under this model. Recall 

from Equation 4 and 5 that income and price elasticity of demand for single family residential 

households is driven by the covariate coefficient of price x income. The presence of the regression 

coefficient for price for single family residential households points additionally to the role of price 

elasticity in driving high values of demand. 

 

Figure 3-6: Box Coverage plot for the Case 2. Red dots indicate samples of interest (those in 

which demand in 2070 is above the 75th percentile of all model outputs), blue dots are samples 

not of interest and the black solid line indicates the chosen Box. The degree to which input 

variables are constrained can be examined by considering the position of the box against the 

axis for each input variable. 

3.2.3. Which input parameters is the estimation of demand most sensitive to? 

The figure shows the bivariate distributions of total demand, the output of the model, against each 

of the independent variables. The first column in the facet grid shows the results for Case 1 whilst 

the second and third columns show results for Case 2. Each column in the facet grid represents 

one of the four cases under consideration, and each row shows the results for a different 

independent variable. The data are displayed as joint histograms, where the color of the hexagonal 

bins indicate the number of data points that fall within the bin. The darker the blue, the higher the 
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density of data points. The histograms along the x axis indicate that, as expected, sampling of 

independent variables is uniform across their distributions. The same lognormal distribution of 

demand observed in the box plots and exceedance probability curves displayed in Figure 3-2 and 

Figure 3-3 can be seen in the histograms along the y axis. Not all regressions are provided here to 

facilitate interpretability. Only those variables that show a square of Pearson’s correlation 

coefficient (R2) value of greater than 0.01 are displayed. The exception is for growth in single 

family residential and multi-family residential households, which have been included given the 

prominence of population growth as a driver of demand in most demand studies in the literature. 

For both Case 1 and Case 2 the R2 value for and residential (MFR and SFR) temperature and 

precipitation elasticities are less than 0.01. 

A significant point of interest in considering these linear regression plots is that, besides income 

growth, the majority of input parameters show very little trend, with R2 values of less than 0.1 for 

almost all variables across both cases. One can see by observing the spread of data points that for 

every value of most variables, there are demand values from across the entire distribution. This is 

interesting when considering typical approaches to establishing scenarios of demand that we have 

discussed here – high population and employment growth do not necessarily lead to high values 

of demand. Income growth shows the strongest signal in both Cases, showing a clear positive 

relationship with values of demand, and is strongest when elasticity coefficients are not included 

in the sensitivity analysis. For Case 1, price shows the strongest signal after income growth with a 

relatively clear relationship with demand - as expected, demand decreases with increasing price. 

For Case 2, where elasticity uncertainty is accounted for, the regression coefficients for price and 

income show the strongest signal after income growth, both with a 0.15 R2.  
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Figure 3-7: Scatter plots showing total demand in 2070 vs the predictors of demand subject to 

sampling and sensitivity analysis 
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Figure 3-8 shows the results of the Sobol sensitivity analysis. Only those variables that contribute 

more than 1.5% of the uncertainty in any of the Cases is included in the figure. Changes in 

precipitation, conservation, CI temperature and precipitation elasticities, residential (MFR and 

SFR) temperature and precipitation elasticities and the regression coefficient for income elasticity 

all contribute less than 1.5% of the total uncertainty.  

In line with what is observed through linear regression, income growth drives uncertainty in the 

model in both Cases. In Case 1, where elasticities are fixed, this variable overwhelmingly 

dominates, contributing 74% of the total uncertainty. Second order interactions between 

independent variables play little to no role in driving uncertainty in Case 1. The attribution of 

uncertainty amongst parameters notably changes when elasticities of demand are included in the 

analysis. In Case 2, the dominance of income growth is still visible, with 40% of the variance in 

model output attributed to this variable, however the regression coefficients of price and the 

covariate coefficient of price x income also play a significant role (contributing more than 10% of 

the total uncertainty each). It is worth pausing to recall that, as shown in equations (1), (4) and (5), 

income growth not only drives the governing equation of residential demand (eq. 1) for SFR and 

MFR sectors, but also plays an important role in the price elasticity of demand. In the case where 

incomes rise at a rate slower than inflation (in the elasticity equations (4 and 5), income in every 

year is expressed in 2000 real terms), then this will lead to a less elastic response with regards to 

income, and a more elastic response with regards to changes in price, and vice versa. The same 

can be said of the relationship between price and the values of income elasticity.   

 
Figure 3-8: First and total order sensitivity indices of uncertain variables sampled across for 

Case 1 (top) and Case 2 (bottom). Note: only independent variables that had a first order or 

total order value of >0.015 were included in the above figures 
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3.3.  Findings 

Through analysis in this step, we have sought to answer three questions; 1) what is the envelope 

of uncertainty surrounding the econometric model of demand we are using for long term planning 

purposes? 2) to which parameters is the model most sensitive to? And 3) what conditions, if any, 

lead total demand in 2070 in the top 75th percentile of all samples. We employed methodologies 

from the decision making under deep uncertainty literature to generate many thousands of 

realizations of demand at the annual time step from 2070, undertook scenario discovery analysis 

through the use of PRIM, performed linear regression and Sobol sensitivity analysis to understand 

the sensitivity of the model to its input variables.  

We have demonstrated that the envelope of uncertainty associated with demand forecasting is 

significant under both Cases considered here, and much larger than key examples presented from 

the literature when the uncertainty associated with elasticity of demand estimates are accounted 

for. Although the range of scenarios captured by Rayej, et al. (2014) is comparable to the range of 

demand found for Case 1 where elasticity values are fixed, Bureau of Reclamation. (2012) captured 

a much smaller range using a similar scenario-based approach. This highlights the dependence of 

a scenario led approach on the judgement of the decision makers and analysts involved. In some 

cases a scenario approach may indeed capture the full envelope of uncertainty, however there is 

no way of knowing if this is the case without quantitative assessment of the uncertainty associated 

with the demand model in use. It should be noted that the ‘Government & Other’ sector, 

representing 20% of total demand across the SFPUC service area was not included in the 

uncertainty analysis and thus the range of demand produced through this analysis is likely to 

underestimate the uncertainty.  

Scenario discovery reveals a relatively clear answer with regards to those scenarios that lead to 

policy failure, i.e. demand in the top 25th percentile of all model runs. Income and to a lesser extent 

price, appear to dominate high demand scenarios in both cases. However, it is challenging to 

unpack the relative importance of income as a driver of demand in Equation 1 (in combination 

with income elasticity of demand) vs its role in driving the price elasticity of demand in Equation 

5. The low density values for boxes in Case 2, and the shallow nature of the density vs coverage 

tradeoff curve in Case 2 indicate that these variables cannot necessarily serve as robust predictors 

of problematic scenarios of demand. Principal Component Analysis as proposed by Dalal et al. 

(2013) as a preprocessing step to PRIM shows promising results in terms of clustering parameters 

but does present issues of interpretability.  

Sensitivity analysis has revealed the central role that income and price elasticity play in driving 

the uncertainty in demand projections for SFPUC customers. However, it should be noted that the 

values for income and price regression coefficients are notably higher than in other comparable 

studies in the region. Further work should be directed towards better understanding the response 

of SFPUC customers to price and income, as well as the most likely future projection of income 

growth for the region in order to reduce the uncertainty they drive in the model. 
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4. Demand Scenarios for the Stress Test  

When extrapolated out to 2070, the 2040 Brattle Group’s forecast of demand represents a 45% 

increase in total demand relative to the Baseline demand for this study – from 305 mgd to 444 mgd 

(presented in Table 4-2). In order to stress test SFPUC’s system against a comprehensive range of 

plausible futures, a range of demand scenarios must be is established that represent a reasonable 

envelope of uncertainty for demand SFPUC faces in this regard. The uncertainty analysis (section 

3) described in section 3 provides a quantitative basis for doing so. For this study, we consider the 

25th exceedance percentile for Case 2 (see Figure 3-3) - ‘Regional Forecasts +and elasticity 

uncertainty’ - to represent our upper bound for total demand at 620 million gallons per day (mgd). 

This value represents a 103% increase in total demand by 2070 relative to our baseline of 305 mgd 

(see Table 4-2). Given the recent observed negative trend in water sales (see Figure 1-6), and the 

potential vulnerability a decrease in demand may present (for example with regards to the finance 

module), we also include a scenario in which demand on the SFPUC system decreases over time. 

Demand scenarios are placed at 15% intervals between a ‘Low’ demand scenario (260 mgd) - 

representing a 15% decrease in total demand - and a ‘High’ demand scenario (625 mgd) - 

representing a 105% increase in total demand by 2070 (see Table 4-2).  

The ‘annual escalation’ represents demand growth per year amongst SFPUC’s customers when 

considering the linear trend between Brattle 2010 total demand and that Brattle 2040 total demand 

(Brattle, 2010, 2014). In the case of Hayward, total demand is projected to decrease by 2040 at a 

rate of 0.05 mgd/ year. In developing our scenarios of demand, we preserve the spatial variation 

in demand growth present in the Brattle forecast in all scenarios by applying a multiplier to the 

‘annual escalation’ value. For example, to obtain a 60% increase in total demand relative to the 

baseline (‘Demand 60’), the annual escalation value for each customer is multiplied by a factor of 

1.10. The scaling factors and resulting total demand under each scenario are provided in Table 9.  

Suburban retail customers were not included in the analysis by Brattle (2018) and so demand 

forecasts for these customers does not currently exist. We consider suburban retail demand to 

remain constant in all demand scenarios according to their Baseline value provided in Table 2-1. 

The final step in developing scenarios is to establish the SFPUC share of total demand. We use the 

observed share of total demand for FY2013 to do this and values are provided in Table 4-3. 

FY2013 can be used as a benchmark for ‘normal’ conditions prior to the 2013-17 drought. The 

SFPUC share of total demand under each demand scenario, for each customer is provided in Table 

4-3. 
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Table 4-1: Projection of total demand 2040 (Brattle, 2018) and annual escalation rate based on 

linear trend from normalized 2010 to year 2040 total demand 

CUSTOMER Annual 

Escalation 

(mgd/year) 

Normalized 

total demand in 

2010 (mgd) 

Brattle 

Demand in 

2040 (AF/d) 

Alameda County WD 0.07 45.58 47.76 

Brisbane/GVMID 0.00 0.61 0.74 

Burlingame 0.02 4.66 5.40 

CWS - Bear Gulch 0.06 12.39 14.15 

CWS - Mid Peninsula 0.13 15.32 19.19 

CWS - South San Francisco 0.06 8.58 10.40 

Coastside County WD 0.05 2.03 3.45 

Daly City 0.06 6.85 8.66 

East Palo Alto WD 0.01 1.81 2.18 

Estero MID 0.01 4.72 4.98 

Hayward -0.05 18.08 16.56 

Hillsborough 0.03 3.30 4.23 

Menlo Park 0.00 3.11 3.20 

Mid-Peninsula 0.01 3.09 3.48 

Millbrae 0.03 2.40 3.21 

Milpitas 0.17 10.68 15.81 

Mountain View 0.08 10.49 12.76 

North Coast County WD 0.05 3.61 5.12 

Palo Alto 0.10 12.26 15.39 

Purissima Hills WD 0.02 1.89 2.57 

Redwood City 0.04 10.30 11.64 

San Bruno 0.03 3.85 4.70 

Santa Clara 0.40 4.89 16.76 

San Jose 0.20 22.55 28.48 

Stanford University 0.06 3.27 5.18 

Sunnyvale 0.12 19.83 23.33 

Westborough WD 0.00 0.92 1.04 

San Francisco 0.31 77.76 87.08 

TOTAL 2.09 314.82 377.45 
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Table 4-2:Total demand scenarios for the stress test 

Scenario name Change 

from 

Baseline 

Scaling 

factor* 

Total 

demand 

mgd 

Demand_-15 -15% 0.57 260.28  

Base 0% - 305.49 

Demand_15 15% 0.78 350.78 

Demand_30 30% 0.89 397.49 

Demand_45 45% 1.00 444.20 

Demand_60 60% 1.10 487.99 

Demand_75 75% 1.21 534.69 

Demand_90 90% 1.32 581.40 

Demand_105 105% 1.43 625.19 

* Scaling factor applied to annual demand escalation for customers included in 

Brattle (2018) study. Suburban retail demand remains constant in all scenarios. 
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Table 4-3: Total demand and SFPUC’s share of total demand per customer for seven of the nine 

demand scenarios presented here. All values are in million gallons per day (mgd)  

CUSTOMER Share 

(-) 

Demand -15 Baseline Demand 15 Demand 30 Demand 45 Demand 60 Demand 75 

Total SFPUC Total SFPUC Total SFPUC Total SFPUC Total SFPUC Total SFPUC Total SFPUC 

Alameda County WD 0.21 28.16 5.91 43.17 9.06 38.80 8.15 44.30 9.30 49.79 10.46 54.94 11.54 60.44 12.69 

Brisbane/GVMID 1.00 0.49 0.49 0.32 0.32 0.67 0.67 0.77 0.77 0.86 0.86 0.95 0.95 1.05 1.05 

Burlingame 0.93 3.46 3.22 4.48 4.16 4.77 4.44 5.45 5.07 6.12 5.70 6.76 6.29 7.43 6.91 

CWS - Bear Gulch 0.95 8.97 8.52 12.71 12.08 12.36 11.74 14.11 13.40 15.86 15.07 17.50 16.62 19.25 18.29 

CWS - Mid Peninsula 1.00 13.00 13.00 14.04 14.04 17.91 17.91 20.45 20.45 22.98 22.98 25.36 25.36 27.90 27.90 

CWS - South San Francisco 0.93 6.89 6.41 7.41 6.89 9.49 8.83 10.84 10.08 12.18 11.33 13.44 12.50 14.79 13.75 

Coastside County WD 0.89 2.75 2.45 1.88 1.67 3.79 3.38 4.33 3.85 4.87 4.33 5.37 4.78 5.91 5.26 

Daly City 0.56 5.91 3.31 7.38 4.13 8.15 4.56 9.30 5.21 10.45 5.85 11.53 6.46 12.69 7.10 

East Palo Alto WD 1.00 1.44 1.44 2.08 2.08 1.98 1.98 2.26 2.26 2.54 2.54 2.81 2.81 3.09 3.09 

Estero MID 1.00 2.96 2.96 4.05 4.05 4.07 4.07 4.65 4.65 5.23 5.23 5.77 5.77 6.35 6.35 

Hayward 1.00 8.48 8.48 15.48 15.48 11.68 11.68 13.34 13.34 14.99 14.99 16.54 16.54 18.19 18.19 

Hillsborough 1.00 2.91 2.91 3.25 3.25 4.01 4.01 4.58 4.58 5.14 5.14 5.68 5.68 6.24 6.24 

Menlo Park 1.00 1.85 1.85 3.24 3.24 2.55 2.55 2.91 2.91 3.27 3.27 3.61 3.61 3.97 3.97 

Mid-Peninsula 1.00 2.19 2.19 3.00 3.00 3.01 3.01 3.44 3.44 3.87 3.87 4.27 4.27 4.69 4.69 

Millbrae 0.99 2.26 2.24 2.30 2.28 3.12 3.09 3.56 3.53 4.00 3.96 4.42 4.37 4.86 4.81 

Milpitas 0.65 11.81 7.68 10.21 6.63 16.28 10.58 18.58 12.08 20.89 13.58 23.05 14.98 25.35 16.48 

Mountain View 0.84 8.47 7.12 10.83 9.09 11.68 9.81 13.33 11.20 14.98 12.59 16.53 13.89 18.19 15.28 

North Coast County WD 1.00 3.74 3.74 2.51 2.51 5.16 5.16 5.89 5.89 6.62 6.62 7.30 7.30 8.03 8.03 

Palo Alto 0.96 10.44 10.02 11.80 11.33 14.39 13.81 16.42 15.77 18.46 17.72 20.37 19.56 22.41 21.51 

Purissima Hills WD 1.00 1.83 1.83 1.99 1.99 2.52 2.52 2.88 2.88 3.24 3.24 3.58 3.58 3.93 3.93 

Redwood City 0.94 7.32 6.88 9.90 9.31 10.09 9.48 11.51 10.82 12.94 12.17 14.28 13.43 15.71 14.77 

San Bruno 0.54 3.14 1.69 3.73 2.01 4.32 2.33 4.93 2.66 5.54 2.99 6.12 3.30 6.73 3.63 

Santa Clara 0.10 19.41 1.94 21.77 2.18 26.74 2.67 30.53 3.05 34.32 3.43 37.87 3.79 41.66 4.17 

San Jose 0.92 16.14 14.85 4.89 4.50 22.24 20.46 25.39 23.36 28.54 26.26 31.49 28.97 34.64 31.87 

Stanford University 0.63 4.00 2.52 3.39 2.14 5.51 3.47 6.29 3.96 7.07 4.45 7.80 4.91 8.58 5.40 

Sunnyvale 0.48 15.13 7.26 19.87 9.54 20.86 10.01 23.81 11.43 26.76 12.85 29.53 14.18 32.48 15.59 

Westborough WD 1.00 0.65 0.65 0.91 0.91 0.90 0.90 1.02 1.02 1.15 1.15 1.27 1.27 1.39 1.39 

San Francisco 1.00 45.59 45.59 58.00 58.00 62.82 62.82 71.71 71.71 80.61 80.61 88.95 88.95 97.84 97.84 
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5. Shaping demand under seasonal fluctuations in 

temperature 

5.1. Annual base and seasonal demand 

In their review of approaches to modelling the response of water demand to changes in climate 

and weather, Kiefer et al. (2013) established that the approach provided by Maidment and Miaou 

(1986) provides greater flexibility in defining the effects of seasonality relative to other 

approaches, and thus was chosen by SFPUC as the approach for this work. The approach relies on 

decomposing observed water use into base and seasonal components (see Figure 1-3) which 

represents the proportion that is insensitive to changes in temperature, the base fraction, and that 

which is sensitive to changes in temperature, the seasonal fraction. This base fraction is generally 

considered to represent essential uses such as for drinking water, washing, toilet flushing etc., 

whilst the seasonal portion generally represents non-essential uses such as for watering gardens, 

washing cars etc. Observed fluctuations in the seasonal component of demand are related to 

observed maximum temperature in the same timestep to establish a demand-temperature response 

function – referred to here as the Heat Function.  

To establish the base and seasonal components of demand for each customer, SFPUC examined 

monthly sales data from 2005 – 2017. For each customer, the lowest value of sale volume for the 

months from December through April is divided by total annual sale volume to estimate the base-

over-total demand ratio. The ratios can vary from year to year for customers with multiple sources 

of supply, in particular in dry years. For this study, it was decided to keep this ratio constant and 

to set it to its value in FY 2012-2013. As demonstrated in Figure 5-1, the range of base-over-total 

demand ratio across customers is significant, with a low of 0.31 for Hillsborough, a high of 0.92 

for the city of San Francisco and a median value of 0.632. A low ratio indicates a high seasonal 

component of demand. These differences reflect differences in water use across regions. The base-

over-total demand ratio for densely population urban areas such as the city of San Francisco is 

high, where consumers are less likely to have outdoor space and water use is focused on essential 

uses. 
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Figure 5-1: Base-over-total demand fraction values across the SFPUC service area for FY2012-

2013 which serves as a baseline for the LTVA stress test analysis. 

5.2. Heat function 

Using a different dataset of weekly deliveries, SFPUC established three heat functions, one for 

each delivery center (South and East Bay, Peninsula and the City of San Francisco). The heat 

functions are shown in Figure 5-2 and represent the seasonal response of customers to changes in 

temperature. To create this heat function, data points have been normalized by the average value 

of delivery for their corresponding week. This is required to ensure the output of the heat function 

is a unit-less coefficient that can be applied to the disaggregated, seasonal portion of annual 

demand. The linear equation that describes the heat function provided in Figure 5-2 is applied to 

realizations of daily maximum temperature to establish a daily time series of ‘Heat Function 

Factor’ that can be applied to the corresponding seasonal component of demand in each time step. 

To ensure applicability of the Heat function equations to all customers in multiple demand 

scenarios in the System Model, we added thresholds to avoid negative seasonal demand. In this 

case between 56F and 59F (see heat functions in Figure 5-2) depending on the delivery center. 

For days in which daily maximum temperature falls below this threshold, the seasonal component 

of demand is assumed to be zero. The heat function (𝐻𝑖) for each i delivery center is provided as 

a function of daily max temperature at San Jose (𝑡𝑚𝑎𝑥𝑆𝐽) and San Francisco Airport (𝑡𝑚𝑎𝑥𝑆𝐹𝑂) 

gauges in equations 11 through 13. 
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South and East Bay (R2 = 0.75):  

𝐻𝑆𝐸𝐵 =  0.12𝑡𝑚𝑎𝑥𝑆𝐽 − 0.07𝑡𝑚𝑎𝑥𝑆𝐹𝑂 − 3.03 (11) 

Peninsula (R2 = 0.71):  

𝐻𝑃𝐸𝑁 =  0.10𝑡𝑚𝑎𝑥𝑆𝐽 − 0.05𝑡𝑚𝑎𝑥𝑆𝐹𝑂 − 3.26 (12) 

City of San Francisco (R2 = 0.65):  

𝐻𝐶𝐶𝑆𝐹 =  0.07𝑡𝑚𝑎𝑥𝑆𝐽 − 3.74 (13) 

Table 5-1: Table detailing the region in which each customer falls – South and East Bay (SEB), 

Peninsula (PEN) and CCSF (City of San Francisco) 

Customer Region 

Alameda County Water District SEB 

Brisbane/GVMID PEN 

Burlingame PEN 

CWS - Bear Gulch SEB 

CWS - Mid Peninsula PEN 

CWS - South San Francisco PEN 

Coastside County Water District PEN 

Daly City PEN 

East Palo Alto Water District SEB 

Estero MID PEN 

Hayward SEB 

Hillsborough PEN 

Menlo Park SEB 

Mid-Peninsula PEN 

Millbrae PEN 

Milpitas SEB 

Mountain View SEB 

North Coast County Water District PEN 

Palo Alto SEB 

Purissima Hills Water District SEB 

Redwood City SEB 

San Bruno PEN 

Santa Clara SEB 

San Jose SEB 

Stanford University SEB 

City of Sunnyvale SEB 

Westborough Water District PEN 

Cordilleras MWC CCSF 

San Francisco  CCSF 
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A key assumption in the development and use of these Heat Functions is that delivery is a good 

proxy for total demand. This is certainly true for all customers relying solely on SFPUC as their 

source of supply but this may not always hold for customers with multiple sources of supply. As 

discussed above, in the case of wholesale customers, deliveries only represent the SFPUC share of 

total demand, thus this assumption may exaggerate the seasonality of demand in the case where 

the SFPUC share of total wholesale demand in low. Figure 5-2 presents a slice of the heat ‘Heat 

Function Factor’ time series for one of the no temperature change climate realizations in which the 

seasonal shape sought through this analysis is clearly observed.  

 
Figure 5-2: Heat functions for the 3 delivery centers (left), and a slice of heat function factor for 

delivery centers (right) 

5.2.1. Post-processing Weather Generator outputs for use in heat-functions 

Figure 5-3 shows the SFPUC service area, the area covered by the weather generator, and the 

location of the San Jose (SJ) and San Francisco Airport (SFO) temperature gauges, which are the 

gauges of interest for modelling seasonal demand.  

As detailed in HRG TR1 (2018), nine stochastic realizations of temperature were generated for the 

areas covering the three hydrological basins upon which the RWS relies. The relevant spatial 

domain for demand modeling is shown in Figure 5-3. While the weather generator outputs 

temperature data at the grid cell level (shaded area in Figure 5-3), the heat functions illustrated in 

Figure 5-2 use station data for modeling seasonal demand. For this reason, the temperature at the 

SJ and SFO gauges are estimated from the nearest available grid cell. For SFO, this grid cell is the 

one in which the SFO gauge lies; and for SJ gauge, that which is located outside the spatial domain 

included in the weather generator, this grid cell is located east from its location (i.e., grid cells 

bordered by the red dashed lines in Figure 5-3). 
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Figure 5-3. Map showing the SFPUC service area. The location of grid cells where the weather 

generator generates temperature data for South and East Bay and Peninsula regions (shaded 

areas). Red triangles indicate the location of temperature gauges across the region. San 

Francisco Airport and San Jose gauges are those used in the development of Heat Functions that 

are used to scale daily seasonal demand based on daily maximum temperature. The two grid 

cells bordered with a red dashed line are those used to establish stochastic realizations of 

climate from the weather generator. 

The linear regressions illustrated in Figure 5-4 were developed to estimate the maximum daily 

temperature at SJ and SFO from the maximum daily temperature at the above-mentioned grid cells 

and obtained from the stochastic weather generator. However, application of these linear 

regressions does not allow for a good reproduction of the observed distribution at SFO and SJ, as 

shown in Figure 5-5. A quantile mapping correction was used to correct the identified bias. Figure 

5-5 demonstrates that although the distribution of the corrected simulated temperature although 

(orange lines) is significantly closer to the observed one, the fit with the distribution of the 

observed temperature at the gauge is not perfect.  
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Figure 5-4. Linear regression showing the relationship between the historical temperature at 

SFO and SJ temperature gauges vs historical temperature for the nearest grid cell.  

 

 
Figure 5-5. Comparison of the cumulative distribution functions obtained from the observed 

record at the gauge station (blue), the simulated temperature at the gauge using the weather 

generator output from the nearest grid cell and the linear regression shown in Figure 5-4 

(green) and the bias corrected simulated temperature (orange). The top and bottom panels show 

the distributions for SFO and SJ gauge locations, respectively.   

This bias propagates through into the application of the heat functions that shape the seasonal 

portion of demand and ultimately into average daily demand that is fed into SFWSM. For example, 

the demand 227mgd demand scenario is in fact 225mgd on average. This bias is outlined in Table 
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5-2 which provides for each demand scenario the simulated daily average base, seasonal and total 

demand together with the error.  

Table 5-2. Description of the bias in the demand scenarios. The average bias across the 10 

realizations from the weather generator is shown. The variability across the stochastic 

realizations is not significant (standard deviation of the error across the 9 realizations is 

0.02mgd, 0.03mgd, 0.03mgd and 0.04mgd, respectively for the demand scenarios 227mgd, 

265mgd, 300mgd and 334mgd. 

Demand Scenario for the RWS 
Simulated Demand for the RWS after 

daily disaggregation via the heat 
functions 

Model Error 

Name 
Base 

Demand  
Seasonal 
Demand  

Total 
Demand 

Simulated 
Base 

Simulated 
Seasonal 

Total 
Absolute 

(mgd) 
Relative 

(%) 

227 mgd 157.37 69.42 226.79 157.37 67.84 225.21 -1.57 -0.69 

265 mgd 181.61 83.40 265.01 181.61 81.43 263.04 -1.97 -0.74 

300 mgd 204.78 94.80 299.58 204.78 92.56 297.34 -2.24 -0.75 

334 mgd  227.96 106.18 334.14 227.96 103.68 331.64 -2.50 -0.75 

 

5.3. Long term effects of climate change on demand 

The LTVA is concerned with understanding what the impact of climate change will be SFPUC’s 

water system. In order to stress test the system against possible future changes in temperature as a 

result of climate change, 6 scenarios of temperature increase are used – 0 to 5°C in 1°C intervals. 

However, little investigation has been directed towards understanding the potential impact of 

climate change on demand on an inter annual basis: 

 

“Relatively few cases are found in the literature where the focus of water modelling 

 on measuring the influence of climate and weather. Even fewer cases have 

considered how the prospects of climate change may affect water use, and none have 

studied, at least in any direct sense, whether such prospects might influence choices about 

modelling methods. (Kiefer et al. 2013)” 

If one applies the heat functions provided in Figure 18 to temperature time series that include 

scenarios of increasing temperature as a result of climate change then we do not see a change in 

the seasonality of demand through time but instead see a step change increase in demand. As 

shown in Figure 19, if we apply a 5 C increase in temperature to the step change scenarios and 

then apply the heat functions to shape the seasonal portion of demand, we see a 15% increase in 

average annual demand relative to the no change scenario. This effect can also be seen in Trend 

model runs (Figure 19). This is due to the fact that there are very few days in the year in which 

there is not a seasonal component to demand (i.e. where temperature is below the threshold shown 

in Figure 18). This is a known shortcoming of the base – seasonal approach to decomposing 

demand. Climates that can support year-round vegetation growth and irrigation of outdoor 
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vegetation are likely to capture some climate and weather sensitive elements in the base component 

of their demand (Kiefer et al., 2013).  

If we instead consider the elasticities of demand to temperature established by the Brattle Group 

(2018), a 5 C increase (equivalent to 9F) in temperature, representing a 13% increase in 

maximum daily temperature (relative to the historical average of 62.28 F), results in an increase 

in demand of 6.2% and 1.4% for CI and SFR sectors respectively3. This is significantly less than 

would be implied by using the heat functions as described above.  

It seems that for the case of San Francisco, the use of heat functions on temperature timeseries that 

include climate change likely overstates the role that temperature has in driving demand on an 

inter annual basis. Particularly when compared to the demand response implied by the temperature 

elasticities of demand established by Brattle (2018). For this study, we do not link our demand 

scenarios to a specific scenario of temperature increase but instead use the same base 9 realizations 

of temperature to shape seasonal intra annual fluctuations in demand for all climate change 

scenarios.  

The question of the impact of climate change on water demand, and the appropriate model to 

account for such impacts remains an open research question. Energy demand has received 

comparatively more attention in this regard (Franco and Sanstad, 2008; Thatcher, 2007; Sullivan 

et al. 2015) and there is likely much we can learn from this sector moving forward.  

 
3
 The elasticities of demand for temperature derived by the Brattle Group (2018) are 0.482 for CI and 0.109 for SFR 
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Figure 5-6: illustration of the effect of applying heat functions to timeseries of temperature in 

which potential changes in climate have been accounted for. Black lines indicate demand in a no 

temperature change scenario, red lines indicate demand in a +5C scenario and dashed blue 

lines indicate the difference between these two scenarios. Top to bottom: average daily demand 

for each day of the year across one realization temperature  

Figure : seasonality test for case in which heat functions are applied to temperature timeseries in which climate change has been included. Black lines denote no 

change scenario, red lines denote 5C increase scenario and blue dotted lines denote the difference between scenarios. All figures show the seasonal component 

of the base demand scenario under the same weather generator realization. From top to bottom: mean demand in AF/d for each day of the year across time 

horizon in trend model run, demand in AF/d for the last year of the time series for trend model run, mean demand in AF/d for each day of the year across time 
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